Important: Read this before posting to this forum

  1. This forum is for questions related to the use of Apollo. We will answer some general choice modelling questions too, where appropriate, and time permitting. We cannot answer questions about how to estimate choice models with other software packages.
  2. There is a very detailed manual for Apollo available at http://www.ApolloChoiceModelling.com/manual.html. This contains detailed descriptions of the various Apollo functions, and numerous examples are available at http://www.ApolloChoiceModelling.com/examples.html. In addition, help files are available for all functions, using e.g. ?apollo_mnl
  3. Before asking a question on the forum, users are kindly requested to follow these steps:
    1. Check that the same issue has not already been addressed in the forum - there is a search tool.
    2. Ensure that the correct syntax has been used. For any function, detailed instructions are available directly in Apollo, e.g. by using ?apollo_mnl for apollo_mnl
    3. Check the frequently asked questions section on the Apollo website, which discusses some common issues/failures. Please see http://www.apollochoicemodelling.com/faq.html
    4. Make sure that R is using the latest official release of Apollo.
  4. If the above steps do not resolve the issue, then users should follow these steps when posting a question:
    1. provide full details on the issue, including the entire code and output, including any error messages
    2. posts will not immediately appear on the forum, but will be checked by a moderator first. This may take a day or two at busy times. There is no need to submit the post multiple times.

probabilities of classes vary across choice tasks in a LC-MXL model

Ask questions about model specifications. Ideally include a mathematical explanation of your proposed model.
Post Reply
DamienJ
Posts: 10
Joined: 08 Nov 2022, 08:57

probabilities of classes vary across choice tasks in a LC-MXL model

Post by DamienJ »

I am trying to develop a model testing for ANA (using a LC-Mixed Logit model) to avoid inflating the ANA.
Given the high number of possible classes, I am using the methodology proposed by Hole, 2011. This gave me plausible results.
From this model, I wanted to test the idea that attendance might vary across choice tasks. To get started, I wan to test if the probability of ANA for the first choice task is different from the probability of the other choice tasks (overall 6 choice tasks)

I have written the following code. It runs, but I get the following warning:

"The class allocation probabilities for model component "model" are calculated at the observation level in 'apollo_lcPars', but are used in
'apollo_probabilities' to multiply within class probabilities that are at the individual level. Apollo will average the class allocation
probabilities across observations for the same individual level before using them to multiply the within-class probabilities. If your class
allocation probabilities are constant across choice situations for the same individual, then this is of no concern. If your class allocation
probabilities however vary across choice tasks, then you should change your model specification in 'apollo_probabilities' to only call
'apollo_panelProd' after calling 'apollo_lc'. "

Since it is the case, that probabilities would vary across choice tasks, I tried to follow the advice, but I am unable to find the right way to write it.

I have tried to insert the two lines

Code: Select all

lc_settings  = list(inClassProb = P, classProb=pi_values)
 P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)

before the class loop, but it throws an error.


Here is the code I have written so far.

Code: Select all

### Clear memory
rm(list = ls())

### Load Apollo library
library(apollo)
library(ggplot2)
library(dplyr)

### Initialise code
apollo_initialise()

### Set core controls
apollo_control = list(
  modelName       = "ANA_MXL_pref_space_HiProbs_Diff1",
  modelDescr      = "ANA + MXL HiProbs stability of probabilities? ",
  indivID         = "interview__key",
  nCores          = 2, 
  outputDirectory = "02_scripts/_pourPapier/output/",
  mixing = TRUE,
  panelData = TRUE
)

# # load data
load(file = "forForum.RData")


### Vector of parameters, including any that are kept fixed in estimation
apollo_beta=c(mu_asc    = -2,
              mu_work = -2,
              sigma_work = 1,
              mu_fodd = 1.6,
              sigma_fodd = 1, 
              mu_legu = 4,
              sigma_legu = 1,
              mu_engr = -1,
              sigma_engr = 1, 
              mu_subs = 0.3,
              sigma_subs = 0.2, 
              delta_anafodd = 1,
              delta_analegu = 1,
              delta_anaengr = 0.1, 
              delta_anasubs = 0.1 ,
                gamma_fodd = 0.1 ,
                gamma_legu = 0.1 ,
                gamma_engr = 0.1 ,
                gamma_subs = 0.1 
                )

apollo_fixed = c()

# ################################################################# #
#### DEFINE RANDOM COMPONENTS                                    ####
# ################################################################# #

### Set parameters for generating draws
apollo_draws = list(
  interDrawsType="sobolOwenFaureTezuka",           
  interNDraws= 150,                   
  interUnifDraws=c(),                
  interNormDraws=c("draws_work", "draws_fodd","draws_legu","draws_engr", "draws_subs"),    
  
  intraDrawsType="mlhs",
  intraNDraws=0,
  intraUnifDraws=c(),
  intraNormDraws=c()
)

### Create random parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
  randcoeff = list()

  randcoeff[["b_work"]] = (mu_work + sigma_work * draws_work)
  randcoeff[["b_work0"]] = 0* (mu_work + sigma_work * draws_work)
  randcoeff[["b_fodd"]] = (mu_fodd + sigma_fodd * draws_fodd)
  randcoeff[["b_fodd0"]] = 0* (mu_fodd + sigma_fodd * draws_fodd)
  randcoeff[["b_legu"]] = (mu_legu + sigma_legu * draws_legu)
  randcoeff[["b_legu0"]] = 0* (mu_fodd + sigma_fodd * draws_fodd)
  randcoeff[["b_engr"]] = (mu_engr + sigma_engr * draws_engr)
  randcoeff[["b_engr0"]] = 0* (mu_fodd + sigma_fodd * draws_fodd)
  randcoeff[["b_subs"]] = (mu_subs + sigma_subs * draws_subs)
  randcoeff[["b_subs0"]] = 0* (mu_fodd + sigma_fodd * draws_fodd)
  
  return(randcoeff)
}

#### DEFINE LATENT CLASS COMPONENTS                              ####
apollo_lcPars=function(apollo_beta, apollo_inputs){
  lcpars = list()
  
  lcpars[["beta_work"]] = list(b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	,	b_work0	)
  lcpars[["beta_fodd"]] = list(b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	,	b_fodd0	)
  lcpars[["beta_legu"]] = list(b_legu	,	b_legu	,	b_legu	,	b_legu	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu	,	b_legu	,	b_legu	,	b_legu	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu	,	b_legu	,	b_legu	,	b_legu	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu	,	b_legu	,	b_legu	,	b_legu	,	b_legu0	,	b_legu0	,	b_legu0	,	b_legu0	)
  lcpars[["beta_engr"]] = list(b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	,	b_engr	,	b_engr	,	b_engr0	,	b_engr0	)
  lcpars[["beta_subs"]] = list(b_subs	,	b_subs0 ,	b_subs	,	b_subs0 ,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	,	b_subs	,	b_subs0	)
  
  # do not take into account the last 16 classes 
  lcpars[["beta_work"]] = lcpars[["beta_work"]][-c(17:32)]
  lcpars[["beta_fodd"]] = lcpars[["beta_fodd"]][-c(17:32)]
  lcpars[["beta_legu"]] = lcpars[["beta_legu"]][-c(17:32)]
  lcpars[["beta_engr"]] = lcpars[["beta_engr"]][-c(17:32)]
  lcpars[["beta_subs"]] = lcpars[["beta_subs"]][-c(17:32)]
  
  ### Generic settings for class allocation models
  classAlloc_settings = list(
    classes      = c(class_a = 1,   class_b = 2,   class_c = 3,  class_d = 4, 
                     class_e = 5,   class_f = 6,   class_g = 7,  class_h = 8, 
                     class_i = 9,   class_j = 10,  class_k = 11, class_l = 12, 
                     class_m = 13,  class_n = 14,  class_o = 15, class_p = 16
                     ), 
    avail        = 1
  )
  
  # intermediate deltas , if flag (CTASK >1) then we add a shifter
  delta_fodd =  delta_anafodd + gamma_fodd * flag
  delta_legu =  delta_analegu + gamma_legu * flag
  delta_engr =  delta_anaengr + gamma_engr * flag
  delta_subs =  delta_anasubs + gamma_subs * flag
  
  # Calculation of probabilities based on the idinvidual deltas
  V = list()
  V[[1]]	=	0								
  V[[2]]	=	delta_subs 
  V[[3]]	=	delta_engr		
  V[[4]]	=	delta_engr	+	delta_subs
  V[[5]]	=	delta_legu				
  V[[6]]	=	delta_legu	+	delta_subs
  V[[7]]	=	delta_legu	+	delta_engr		
  V[[8]]	=	delta_legu	+	delta_engr	+	delta_subs
  V[[9]]	=	delta_fodd						
  V[[10]]	=	delta_fodd	+	delta_subs
  V[[11]]	=	delta_fodd	+	delta_engr		
  V[[12]]	=	delta_fodd	+	delta_engr	+	delta_subs
  V[[13]]	=	delta_fodd	+	delta_legu				
  V[[14]]	=	delta_fodd	+	delta_legu	+	delta_subs
  V[[15]]	=	delta_fodd	+	delta_legu	+	delta_engr		
  V[[16]]	=	delta_fodd	+	delta_legu	+	delta_engr	+	delta_subs
    
  classAlloc_settings$utilities = V
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
  
  return(lcpars)
}

apollo_inputs = apollo_validateInputs()

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                        

apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
  
  ### Attach inputs and detach after function exit
  apollo_attach(apollo_beta, apollo_inputs)
  on.exit(apollo_detach(apollo_beta, apollo_inputs))
  
  ### Create list of probabilities P
  P = list()
  
  ### Define settings for MNL model component that are generic across classes
  mnl_settings = list(
    alternatives  = c("1"=1, "2"=2, "SQ"=3), 
    avail         = list("1"=1, "2"=1, "SQ"=1), 
    choiceVar     = CHOICE)

  ### Loop over classes
  for(s in 1:16){
    ### Compute class-specific utilities
    V=list()
    V[["SQ"]] = mu_asc + beta_work[[s]]*WORKSQ/100 + beta_fodd[[s]]*FODDSQ/100 + beta_legu[[s]]*LEGUSQ/100  + beta_engr[[s]]*ENGRSQ/100 + beta_subs[[s]]*SUBSSQ/100
    V[["1"]]  = beta_work[[s]]*WORK1/100 +  beta_fodd[[s]]*FODD1/100 + beta_legu[[s]]*LEGU1/100 + beta_engr[[s]]*ENGR1/100 + beta_subs[[s]]*SUBS1/100
    V[["2"]]  = beta_work[[s]]*WORK2/100 + beta_fodd[[s]]*FODD2/100 + beta_legu[[s]]*LEGU2/100 + beta_engr[[s]]*ENGR2/100 + beta_subs[[s]]*SUBS2/100
    
    mnl_settings$utilities = V
    mnl_settings$componentName = paste0("Class_",s)

    ### Compute within-class choice probabilities using MNL model
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)
    
    ### Take product across observation for same individual
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], apollo_inputs ,functionality)
    
    # ### Average across inter-individual draws within classes
    P[[paste0("Class_",s)]] = apollo_avgInterDraws(P[[paste0("Class_",s)]], apollo_inputs, functionality)

    }
  
  ### Compute latent class model probabilities
  lc_settings  = list(inClassProb = P, classProb=pi_values)
  P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)
  
  ### Prepare and return outputs of function
  P = apollo_prepareProb(P, apollo_inputs, functionality)
  return(P)
}


# ################################################################# #
#### MODEL ESTIMATION AND OUTPUT                                 ####
# ################################################################# #

model = apollo_estimate(apollo_beta,
                         apollo_fixed, apollo_probabilities, apollo_inputs)

apollo_modelOutput(model)
Attachments
forForum.zip
Extract of database
(2.13 KiB) Downloaded 13 times
stephanehess
Site Admin
Posts: 1002
Joined: 24 Apr 2020, 16:29

Re: probabilities of classes vary across choice tasks in a LC-MXL model

Post by stephanehess »

Hi

sorry, your message had got lost

Apollo tells you that you should have the following order of operations: 'apollo_panelProd' after calling 'apollo_lc'.

In your model, you need to move apollo_panelProd and apollo_avgInterDraws to be outside the loop, after P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)

Stephane
--------------------------------
Stephane Hess
www.stephanehess.me.uk
Post Reply