Important: Read this before posting to this forum

  1. This forum is for questions related to the use of Apollo. We will answer some general choice modelling questions too, where appropriate, and time permitting. We cannot answer questions about how to estimate choice models with other software packages.
  2. There is a very detailed manual for Apollo available at http://www.ApolloChoiceModelling.com/manual.html. This contains detailed descriptions of the various Apollo functions, and numerous examples are available at http://www.ApolloChoiceModelling.com/examples.html. In addition, help files are available for all functions, using e.g. ?apollo_mnl
  3. Before asking a question on the forum, users are kindly requested to follow these steps:
    1. Check that the same issue has not already been addressed in the forum - there is a search tool.
    2. Ensure that the correct syntax has been used. For any function, detailed instructions are available directly in Apollo, e.g. by using ?apollo_mnl for apollo_mnl
    3. Check the frequently asked questions section on the Apollo website, which discusses some common issues/failures. Please see http://www.apollochoicemodelling.com/faq.html
    4. Make sure that R is using the latest official release of Apollo.
  4. If the above steps do not resolve the issue, then users should follow these steps when posting a question:
    1. provide full details on the issue, including the entire code and output, including any error messages
    2. posts will not immediately appear on the forum, but will be checked by a moderator first. This may take a day or two at busy times. There is no need to submit the post multiple times.

Error while estimating a Hybrid latent class choice model

Ask questions about errors you encouunter. Please make sure to include full details about your model specifications, and ideally your model file.
Post Reply
Pigouvian
Posts: 10
Joined: 23 Jun 2023, 19:26

Error while estimating a Hybrid latent class choice model

Post by Pigouvian »

Dear Prof. Hess and Dr. Palma,
I am trying to run a Hybrid latent class choice model for my dataset. I have tried to develop the model in both ways (LVs as a part of class membership and LVs as a part of class specific model). However I am getting the following error: Error in f(init, x[]) : non-conformable arrays[/b in both the cases.

Could you please look into the same?

Please find the code for LVs as a part of class allocation/membership

Code: Select all

# ################################################################# #
#### LOAD LIBRARY AND DEFINE CORE SETTINGS                       ####
# ################################################################# #

### Clear memory
rm(list = ls())

### Load Apollo library
library(apollo)

### Initialise code
apollo_initialise()

### Set core controls
apollo_control = list(
  modelName       = "Apollo_GS",
  modelDescr      = "Hybrid latent class choice",
  indivID         = "ID", 
  nCores          = 16,
  outputDirectory = "output"
)

# ################################################################# #
#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                     ####
# ################################################################# #

database = read.csv("Apollo_CS.csv")

# ################################################################# #
#### DEFINE MODEL PARAMETERS                                     ####
# ################################################################# #

### Vector of parameters, including any that are kept fixed in estimation
apollo_beta = c(b_tc_cs_A                = 0,
                b_tc_ncs_A               = 0,
                b_tt_cs_A                = 0,
                b_tt_ncs_A               = 0,
                b_service_frequency_cs_A = 0,
                b_Shopping_card_A        = 0,
                b_Loan_A                 = 1,
                b_Wifi_A                 = 0,

                b_tc_cs_B                = 0,
                b_tc_ncs_B               = 0,
                b_tt_cs_B                = 0,
                b_tt_ncs_B               = 0,
                b_service_frequency_cs_B = 0,
                b_Shopping_card_B        = 0,
                b_Loan_B                 = 1,
                b_Wifi_B                 = 0,


                asc_cs_A               = 1,
                asc_ncs_A              = 0,
                asc_cs_B               = 1,
                asc_ncs_B              = 0,


                b_Mode_use_Car_A        = 0,
                b_female_A              = 0,
                b_Age_21_30_A           = 0,
                b_Age_40_60_A           = 0,
                b_Income_0_50k_A        = 0,
                b_Income_above_100k_A   = 0,
                b_Education_PG_A        = 0,
                Lambda_C_A             = 0,
                Lambda_O_A             = 0,

                b_Mode_use_Car_B        = 0,
                b_female_B             = 0,
                b_Age_21_30_B           = 0,
                b_Age_40_60_B           = 0,
                b_Income_0_50k_B        = 0,
                b_Income_above_100k_B   = 0,
                b_Education_PG_B        = 0,
                Lambda_C_B              = 0,
                Lambda_O_B              = 0,

                zeta_C_a              = 1,  
                zeta_C_b              = 1,  
                zeta_C_c              = 1,  
                zeta_C_d              = 1,  
   
                zeta_O_a              = 1,   
                zeta_O_b              = 1, 
                zeta_O_c              = 1,  


                tau_C_a_1            = -2,   
                tau_C_a_2            = -1,  
                tau_C_a_3            =  1,  
                tau_C_a_4            =  2,  

                tau_C_b_1            = -2,   
                tau_C_b_2            = -1, 
                tau_C_b_3            =  1,  
                tau_C_b_4            =  2,  

                tau_C_c_1            = -2,   
                tau_C_c_2            = -1,
                tau_C_c_3            =  1,  
                tau_C_c_4            =  2,  

                tau_C_d_1            = -2,   
                tau_C_d_2            = -1,  
                tau_C_d_3            =  1,  
                tau_C_d_4            =  2,  


                tau_O_a_1            = -2,   
                tau_O_a_2            = -1,  
                tau_O_a_3            =  1,  
                tau_O_a_4            =  2,  

                tau_O_b_1            = -2,   
                tau_O_b_2            = -1,  
                tau_O_b_3            =  1,  
                tau_O_b_4            =  2,  

                tau_O_c_1            = -2,   
                tau_O_c_2            = -1,  
                tau_O_c_3            =  1,  
                tau_O_c_4            =  2,

                delta_a              = 0,
                delta_b              = 0)








### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c("asc_cs_A", "b_Loan_A", "delta_a")


# ################################################################# #
#### DEFINE RANDOM COMPONENTS                                    ####
# ################################################################# #

### Set parameters for generating draws
apollo_draws = list(
  interDrawsType="halton", 
  interNDraws=100,          
  interUnifDraws=c(),      
  interNormDraws=c("eta_C", "eta_O"), 
  
  intraDrawsType="",
  intraNDraws=0,          
  intraUnifDraws=c(),     
  intraNormDraws=c()      
)
  
### Create random parameters
apollo_randCoeff=function(apollo_beta, apollo_inputs){
  randcoeff = list()
  
  randcoeff[["LV_C"]] = eta_C

  randcoeff[["LV_O"]] = eta_O



  return(randcoeff)
}


# ################################################################# #
#### DEFINE LATENT CLASS COMPONENTS                              ####
# ################################################################# #

apollo_lcPars=function(apollo_beta, apollo_inputs){
  lcpars = list()

lcpars[["b_tc_cs"]]                   = list(b_tc_cs_A      , b_tc_cs_B)
lcpars[["b_tc_ncs"]]                  = list(b_tc_ncs_A     , b_tc_ncs_B)
lcpars[["b_tt_cs"]]                   = list(b_tt_cs_A      , b_tt_cs_B)
lcpars[["b_tt_ncs"]]                  = list(b_tt_ncs_A     , b_tt_ncs_B)
lcpars[["b_service_frequency_cs"]]    = list(b_service_frequency_cs_A      , b_service_frequency_cs_B)
lcpars[["b_Shopping_card"]]           = list(b_Shopping_card_A      , b_Shopping_card_B)
lcpars[["b_Loan"]]                    = list(b_Loan_A      , b_Loan_B)
lcpars[["b_Wifi"]]                    = list(b_Wifi_A      , b_Wifi_B)
lcpars[["asc_cs"]]                    = list(asc_cs_A    , asc_cs_B)
lcpars[["asc_ncs"]]                    = list(asc_ncs_A    , asc_ncs_B)






### Utilities of class allocation model
  V=list()
  V[["class_a"]] = delta_a + b_Age_40_60_A*Age_40_60 + b_Mode_use_Car_A*Mode_use_Car + b_female_A*female + b_Age_21_30_A*Age_21_30 + Lambda_C_A*LV_C + Lambda_O_A*LV_O + 
                       b_Income_0_50k_A*Income_0_50k + b_Education_PG_A*Education_PG + b_Income_above_100k_A*Income_above_100k

  V[["class_b"]] = delta_b + b_Age_40_60_B*Age_40_60 + b_Mode_use_Car_B*Mode_use_Car + b_female_B*female + b_Age_21_30_B*Age_21_30 + Lambda_C_B*LV_C + Lambda_O_B*LV_O + 
                       b_Income_0_50k_B*Income_0_50k + b_Education_PG_B*Education_PG + b_Income_above_100k_B*Income_above_100k

### Settings for class allocation models
  classAlloc_settings = list(
    classes      = c(class_a=1, class_b=2), 
    utilities    = V  
  )
  
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
  
  return(lcpars)
}

# ################################################################# #
#### GROUP AND VALIDATE INPUTS                                   ####
# ################################################################# #

apollo_inputs = apollo_validateInputs()


# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION                        ####
# ################################################################# #

apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
  
  ### Initialise
  apollo_attach(apollo_beta, apollo_inputs)
  on.exit(apollo_detach(apollo_beta, apollo_inputs))
  P = list()

### Likelihood of indicators
  ol_settings1 = list(outcomeOrdered = C_a, 
                      V              = zeta_C_a*LV_C, 
                      tau            = list(tau_C_a_1, tau_C_a_2, tau_C_a_3, tau_C_a_4),
                      rows           = (task==1),
                      componentName  = "indic_C_a")
  ol_settings2 = list(outcomeOrdered = C_b, 
                      V              = zeta_C_b*LV_C, 
                      tau            = list(tau_C_b_1, tau_C_b_2, tau_C_b_3, tau_C_b_4),
                      rows           = (task==1),
                      componentName  = "indic_C_b")
  ol_settings3 = list(outcomeOrdered = C_c, 
                      V              = zeta_C_c*LV_C, 
                      tau            = list(tau_C_c_1, tau_C_c_2, tau_C_c_3, tau_C_c_4),
                      rows           = (task==1),
                      componentName  = "indic_C_c")
  ol_settings4 = list(outcomeOrdered = C_d, 
                      V              = zeta_C_d*LV_C, 
                      tau            = list(tau_C_d_1, tau_C_d_2, tau_C_d_3, tau_C_d_4),
                      rows           = (task==1),
                      componentName  = "indic_C_d")

  ol_settings5 = list(outcomeOrdered = O_a, 
                      V              = zeta_O_a*LV_O, 
                      tau            = list(tau_O_a_1, tau_O_a_2, tau_O_a_3, tau_O_a_4),
                      rows           = (task==1),
                      componentName  = "indic_O_a")
  ol_settings6 = list(outcomeOrdered = O_b, 
                      V              = zeta_O_b*LV_O, 
                      tau            = list(tau_O_b_1, tau_O_b_2, tau_O_b_3, tau_O_b_4),
                      rows           = (task==1),
                      componentName  = "indic_O_b")
  ol_settings7 = list(outcomeOrdered = O_c, 
                      V              = zeta_O_c*LV_O, 
                      tau            = list(tau_O_c_1, tau_O_c_2, tau_O_c_3, tau_O_c_4),
                      rows           = (task==1),
                      componentName  = "indic_O_c")




P[["indic_C_a"]]     = apollo_ol(ol_settings1, functionality)
P[["indic_C_b"]]     = apollo_ol(ol_settings2, functionality)
P[["indic_C_c"]]     = apollo_ol(ol_settings3, functionality)
P[["indic_C_d"]]     = apollo_ol(ol_settings4, functionality)

P[["indic_O_a"]]     = apollo_ol(ol_settings5, functionality)
P[["indic_O_b"]]     = apollo_ol(ol_settings6, functionality)
P[["indic_O_c"]]     = apollo_ol(ol_settings7, functionality)


  ### Likelihood of choices inside each class
  S <- 2
  for(s in 1:S){
    ### Utilities for alternatives
    V = list()
  ### List of utilities: these must use the same names as in mnl_settings, order is irrelevant
  V = list()
  V[["cs"]] = asc_cs[[s]] + b_tc_cs[[s]]*tc_cs + b_tt_cs[[s]]*tt_cs + b_service_frequency_cs[[s]]*service_frequency_cs +  
                       b_Loan[[s]]*(benefits_cs==2) + b_Wifi[[s]]*(benefits_cs==3) + b_Shopping_card[[s]]*(benefits_cs==1)  

                       

  V[["ncs"]] = asc_ncs[[s]] + b_tc_ncs[[s]]*tc_ncs + b_tt_ncs[[s]]*tt_ncs       
               

### Define settings for MNL model component
  mnl_settings = list(
    alternatives  = c(cs=1, ncs=2),
    choiceVar     = choice,
    utilities     = V

  )

    ### mnl_settings$componentName = paste0("Class_",s)
    ### Compute within-class choice probabilities using MNL model
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)
    
    ### Take product across observation for same individual
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], apollo_inputs ,functionality)
  }
  
  ### Compute latent class model probabilities
  lc_settings  = list(inClassProb = P[paste0("Class_", 1:S)], classProb=pi_values)
  P[["choice"]] = apollo_lc(lc_settings, apollo_inputs, functionality)
  
  ### Comment out as necessary
  P = apollo_combineModels(P, apollo_inputs, functionality)
  P = apollo_avgInterDraws(P, apollo_inputs, functionality)
  P = apollo_prepareProb(P, apollo_inputs, functionality)
  return(P)
}

# ################################################################# #
#### CALCULATE LL AT STARTING VALUES                             ####
# ################################################################# #

apollo_llCalc(apollo_beta, apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL ESTIMATION                                            ####
# ################################################################# #

model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL OUTPUTS                                               ####
# ################################################################# #

# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO SCREEN)                               ----
# ----------------------------------------------------------------- #

apollo_modelOutput(model)

# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO FILE, using model name)               ----
# ----------------------------------------------------------------- #

apollo_saveOutput(model)

stephanehess
Site Admin
Posts: 1049
Joined: 24 Apr 2020, 16:29

Re: Error while estimating a Hybrid latent class choice model

Post by stephanehess »

hi

difficult to know without access to the code - can you share it?

but first, your model is clearly overspecified. You cannot estimate the parameters in both classes in the class allocation model. You fix delta_a, but you keep all the other parameters free

Stephane
--------------------------------
Stephane Hess
www.stephanehess.me.uk
Pigouvian
Posts: 10
Joined: 23 Jun 2023, 19:26

Re: Error while estimating a Hybrid latent class choice model

Post by Pigouvian »

I tried to fix a couple of more parameters from Class B, however, I am getting a similar error message.

If the dataset is also needed to rectify this, please let me know.

The code is as follows:

Code: Select all

# ################################################################# #
#### LOAD LIBRARY AND DEFINE CORE SETTINGS                       ####
# ################################################################# #

### Clear memory
rm(list = ls())

### Load Apollo library
library(apollo)

### Initialise code
apollo_initialise()

### Set core controls
apollo_control = list(
  modelName       = "Apollo_GS",
  modelDescr      = "Hybrid latent class choice",
  indivID         = "ID", 
  nCores          = 16,
  outputDirectory = "output"
)

# ################################################################# #
#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                     ####
# ################################################################# #

database = read.csv("Apollo_CS.csv")

# ################################################################# #
#### DEFINE MODEL PARAMETERS                                     ####
# ################################################################# #

### Vector of parameters, including any that are kept fixed in estimation
apollo_beta = c(b_tc_cs_A                = 0,
                b_tc_ncs_A               = 0,
                b_tt_cs_A                = 0,
                b_tt_ncs_A               = 0,
                b_service_frequency_cs_A = 0,
                b_Shopping_card_A        = 0,
                b_Loan_A                 = 1,
                b_Wifi_A                 = 0,

                b_tc_cs_B                = 0,
                b_tc_ncs_B               = 0,
                b_tt_cs_B                = 0,
                b_tt_ncs_B               = 0,
                b_service_frequency_cs_B = 0,
                b_Shopping_card_B        = 0,
                b_Loan_B                 = 1,
                b_Wifi_B                 = 0,


                asc_cs_A               = 1,
                asc_ncs_A              = 0,
                asc_cs_B               = 1,
                asc_ncs_B              = 0,


                b_Mode_use_Car_A        = 0,
                b_female_A              = 0,
                b_Age_21_30_A           = 0,
                b_Age_40_60_A           = 0,
                b_Income_0_50k_A        = 0,
                b_Income_above_100k_A   = 0,
                b_Education_PG_A        = 0,
                Lambda_C_A             = 0,
                Lambda_O_A             = 0,

                b_Mode_use_Car_B        = 0,
                b_female_B             = 0,
                b_Age_21_30_B           = 0,
                b_Age_40_60_B           = 0,
                b_Income_0_50k_B        = 0,
                b_Income_above_100k_B   = 0,
                b_Education_PG_B        = 0,
                Lambda_C_B              = 0,
                Lambda_O_B              = 0,

                zeta_C_a              = 1,  
                zeta_C_b              = 1,  
                zeta_C_c              = 1,  
                zeta_C_d              = 1,  
   
                zeta_O_a              = 1,   
                zeta_O_b              = 1, 
                zeta_O_c              = 1,  


                tau_C_a_1            = -2,   
                tau_C_a_2            = -1,  
                tau_C_a_3            =  1,  
                tau_C_a_4            =  2,  

                tau_C_b_1            = -2,   
                tau_C_b_2            = -1, 
                tau_C_b_3            =  1,  
                tau_C_b_4            =  2,  

                tau_C_c_1            = -2,   
                tau_C_c_2            = -1,
                tau_C_c_3            =  1,  
                tau_C_c_4            =  2,  

                tau_C_d_1            = -2,   
                tau_C_d_2            = -1,  
                tau_C_d_3            =  1,  
                tau_C_d_4            =  2,  


                tau_O_a_1            = -2,   
                tau_O_a_2            = -1,  
                tau_O_a_3            =  1,  
                tau_O_a_4            =  2,  

                tau_O_b_1            = -2,   
                tau_O_b_2            = -1,  
                tau_O_b_3            =  1,  
                tau_O_b_4            =  2,  

                tau_O_c_1            = -2,   
                tau_O_c_2            = -1,  
                tau_O_c_3            =  1,  
                tau_O_c_4            =  2,

                delta_a              = 0,
                delta_b              = 0)








### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c("asc_cs_A", "b_Loan_A", "delta_a", "b_Mode_use_Car_B", "Lambda_O_B")


# ################################################################# #
#### DEFINE RANDOM COMPONENTS                                    ####
# ################################################################# #

### Set parameters for generating draws
apollo_draws = list(
  interDrawsType="halton", 
  interNDraws=100,          
  interUnifDraws=c(),      
  interNormDraws=c("eta_C", "eta_O"), 
  
  intraDrawsType="",
  intraNDraws=0,          
  intraUnifDraws=c(),     
  intraNormDraws=c()      
)
  
### Create random parameters
apollo_randCoeff=function(apollo_beta, apollo_inputs){
  randcoeff = list()
  
  randcoeff[["LV_C"]] = eta_C

  randcoeff[["LV_O"]] = eta_O



  return(randcoeff)
}


# ################################################################# #
#### DEFINE LATENT CLASS COMPONENTS                              ####
# ################################################################# #

apollo_lcPars=function(apollo_beta, apollo_inputs){
  lcpars = list()

lcpars[["b_tc_cs"]]                   = list(b_tc_cs_A      , b_tc_cs_B)
lcpars[["b_tc_ncs"]]                  = list(b_tc_ncs_A     , b_tc_ncs_B)
lcpars[["b_tt_cs"]]                   = list(b_tt_cs_A      , b_tt_cs_B)
lcpars[["b_tt_ncs"]]                  = list(b_tt_ncs_A     , b_tt_ncs_B)
lcpars[["b_service_frequency_cs"]]    = list(b_service_frequency_cs_A      , b_service_frequency_cs_B)
lcpars[["b_Shopping_card"]]           = list(b_Shopping_card_A      , b_Shopping_card_B)
lcpars[["b_Loan"]]                    = list(b_Loan_A      , b_Loan_B)
lcpars[["b_Wifi"]]                    = list(b_Wifi_A      , b_Wifi_B)
lcpars[["asc_cs"]]                    = list(asc_cs_A    , asc_cs_B)
lcpars[["asc_ncs"]]                    = list(asc_ncs_A    , asc_ncs_B)






### Utilities of class allocation model
  V=list()
  V[["class_a"]] = delta_a + b_Age_40_60_A*Age_40_60 + b_Mode_use_Car_A*Mode_use_Car + b_female_A*female + b_Age_21_30_A*Age_21_30 + Lambda_C_A*LV_C + Lambda_O_A*LV_O + 
                       b_Income_0_50k_A*Income_0_50k + b_Education_PG_A*Education_PG + b_Income_above_100k_A*Income_above_100k

  V[["class_b"]] = delta_b + b_Age_40_60_B*Age_40_60 + b_Mode_use_Car_B*Mode_use_Car + b_female_B*female + b_Age_21_30_B*Age_21_30 + Lambda_C_B*LV_C + Lambda_O_B*LV_O + 
                       b_Income_0_50k_B*Income_0_50k + b_Education_PG_B*Education_PG + b_Income_above_100k_B*Income_above_100k

### Settings for class allocation models
  classAlloc_settings = list(
    classes      = c(class_a=1, class_b=2), 
    utilities    = V  
  )
  
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
  
  return(lcpars)
}

# ################################################################# #
#### GROUP AND VALIDATE INPUTS                                   ####
# ################################################################# #

apollo_inputs = apollo_validateInputs()


# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION                        ####
# ################################################################# #

apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
  
  ### Initialise
  apollo_attach(apollo_beta, apollo_inputs)
  on.exit(apollo_detach(apollo_beta, apollo_inputs))
  P = list()

### Likelihood of indicators
  ol_settings1 = list(outcomeOrdered = C_a, 
                      V              = zeta_C_a*LV_C, 
                      tau            = list(tau_C_a_1, tau_C_a_2, tau_C_a_3, tau_C_a_4),
                      rows           = (task==1),
                      componentName  = "indic_C_a")
  ol_settings2 = list(outcomeOrdered = C_b, 
                      V              = zeta_C_b*LV_C, 
                      tau            = list(tau_C_b_1, tau_C_b_2, tau_C_b_3, tau_C_b_4),
                      rows           = (task==1),
                      componentName  = "indic_C_b")
  ol_settings3 = list(outcomeOrdered = C_c, 
                      V              = zeta_C_c*LV_C, 
                      tau            = list(tau_C_c_1, tau_C_c_2, tau_C_c_3, tau_C_c_4),
                      rows           = (task==1),
                      componentName  = "indic_C_c")
  ol_settings4 = list(outcomeOrdered = C_d, 
                      V              = zeta_C_d*LV_C, 
                      tau            = list(tau_C_d_1, tau_C_d_2, tau_C_d_3, tau_C_d_4),
                      rows           = (task==1),
                      componentName  = "indic_C_d")

  ol_settings5 = list(outcomeOrdered = O_a, 
                      V              = zeta_O_a*LV_O, 
                      tau            = list(tau_O_a_1, tau_O_a_2, tau_O_a_3, tau_O_a_4),
                      rows           = (task==1),
                      componentName  = "indic_O_a")
  ol_settings6 = list(outcomeOrdered = O_b, 
                      V              = zeta_O_b*LV_O, 
                      tau            = list(tau_O_b_1, tau_O_b_2, tau_O_b_3, tau_O_b_4),
                      rows           = (task==1),
                      componentName  = "indic_O_b")
  ol_settings7 = list(outcomeOrdered = O_c, 
                      V              = zeta_O_c*LV_O, 
                      tau            = list(tau_O_c_1, tau_O_c_2, tau_O_c_3, tau_O_c_4),
                      rows           = (task==1),
                      componentName  = "indic_O_c")




P[["indic_C_a"]]     = apollo_ol(ol_settings1, functionality)
P[["indic_C_b"]]     = apollo_ol(ol_settings2, functionality)
P[["indic_C_c"]]     = apollo_ol(ol_settings3, functionality)
P[["indic_C_d"]]     = apollo_ol(ol_settings4, functionality)

P[["indic_O_a"]]     = apollo_ol(ol_settings5, functionality)
P[["indic_O_b"]]     = apollo_ol(ol_settings6, functionality)
P[["indic_O_c"]]     = apollo_ol(ol_settings7, functionality)


  ### Likelihood of choices inside each class
  S <- 2
  for(s in 1:S){
    ### Utilities for alternatives
    V = list()
  ### List of utilities: these must use the same names as in mnl_settings, order is irrelevant
  V = list()
  V[["cs"]] = asc_cs[[s]] + b_tc_cs[[s]]*tc_cs + b_tt_cs[[s]]*tt_cs + b_service_frequency_cs[[s]]*service_frequency_cs +  
                       b_Loan[[s]]*(benefits_cs==2) + b_Wifi[[s]]*(benefits_cs==3) + b_Shopping_card[[s]]*(benefits_cs==1)  

                       

  V[["ncs"]] = asc_ncs[[s]] + b_tc_ncs[[s]]*tc_ncs + b_tt_ncs[[s]]*tt_ncs       
               

### Define settings for MNL model component
  mnl_settings = list(
    alternatives  = c(cs=1, ncs=2),
    choiceVar     = choice,
    utilities     = V

  )

    ### mnl_settings$componentName = paste0("Class_",s)
    ### Compute within-class choice probabilities using MNL model
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)
    
    ### Take product across observation for same individual
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], apollo_inputs ,functionality)
  }
  
  ### Compute latent class model probabilities
  lc_settings  = list(inClassProb = P[paste0("Class_", 1:S)], classProb=pi_values)
  P[["choice"]] = apollo_lc(lc_settings, apollo_inputs, functionality)
  
  ### Comment out as necessary
  P = apollo_combineModels(P, apollo_inputs, functionality)
  P = apollo_avgInterDraws(P, apollo_inputs, functionality)
  P = apollo_prepareProb(P, apollo_inputs, functionality)
  return(P)
}

# ################################################################# #
#### CALCULATE LL AT STARTING VALUES                             ####
# ################################################################# #

apollo_llCalc(apollo_beta, apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL ESTIMATION                                            ####
# ################################################################# #

model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL OUTPUTS                                               ####
# ################################################################# #

# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO SCREEN)                               ----
# ----------------------------------------------------------------- #

apollo_modelOutput(model)
# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO FILE, using model name) ----
# ----------------------------------------------------------------- #

apollo_saveOutput(model)
stephanehess
Site Admin
Posts: 1049
Joined: 24 Apr 2020, 16:29

Re: Error while estimating a Hybrid latent class choice model

Post by stephanehess »

Hi

yes, please send me the data and code outside the forum and I'll have a look

Stephane
--------------------------------
Stephane Hess
www.stephanehess.me.uk
Post Reply