Important: Read this before posting to this forum

  1. This forum is for questions related to the use of Apollo. We will answer some general choice modelling questions too, where appropriate, and time permitting. We cannot answer questions about how to estimate choice models with other software packages.
  2. There is a very detailed manual for Apollo available at http://www.ApolloChoiceModelling.com/manual.html. This contains detailed descriptions of the various Apollo functions, and numerous examples are available at http://www.ApolloChoiceModelling.com/examples.html. In addition, help files are available for all functions, using e.g. ?apollo_mnl
  3. Before asking a question on the forum, users are kindly requested to follow these steps:
    1. Check that the same issue has not already been addressed in the forum - there is a search tool.
    2. Ensure that the correct syntax has been used. For any function, detailed instructions are available directly in Apollo, e.g. by using ?apollo_mnl for apollo_mnl
    3. Check the frequently asked questions section on the Apollo website, which discusses some common issues/failures. Please see http://www.apollochoicemodelling.com/faq.html
    4. Make sure that R is using the latest official release of Apollo.
  4. If the above steps do not resolve the issue, then users should follow these steps when posting a question:
    1. provide full details on the issue, including the entire code and output, including any error messages
    2. posts will not immediately appear on the forum, but will be checked by a moderator first. This may take a day or two at busy times. There is no need to submit the post multiple times.

Error of "Parameter does not influence the log-likelihood of model"

Ask questions about model specifications. Ideally include a mathematical explanation of your proposed model.
Post Reply
JoeSu
Posts: 4
Joined: 10 Mar 2022, 00:18

Error of "Parameter does not influence the log-likelihood of model"

Post by JoeSu »

Dear developers,

I want to use a mixed logit model to do estimation. Below is my code and I got the error:

Testing influence of parameters......Error in apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, :
Parameter mu_Efficiency_L2 does not influence the log-likelihood of your model!

Code: Select all

library(readr)
library(support.CEs)
library(survival)
library(openxlsx)
library(tidyr)
library(tidymodels)
library(apollo)
library(chatgpt)
library(dplyr)


setwd("C:/Users/sujie/OneDrive - The University of Tokyo/WorldFish/Bangladesh characterization study/DCE/DCE/v2/CSVs")

### Clear memory
rm(list = ls())

### Load Apollo library
library(apollo)

### Initialise code
apollo_initialise()

### Set core controls
apollo_control = list(
  modelName       = "Bangladesh CE",
  modelDescr      = "Mixed logit model on Bangladesh CE data",
  indivID         = "ID",  
  mixing          = TRUE,
  nCores          = 7
)


des1 <- rotation.design(attribute.names = list(Efficiency = c ("L0", "L1_breeding", "L2_breeding", "L3_breeding"), Productivity = c ("L0", "L1_productivity", "L2_productivity", "L3_productivity"), Productivity_characteristics = c ("L0", "L1_traits", "L2_traits", "L3_traits"), Pond_management = c ("L0", "L1_management", "L2_management", "L3_management"), Fingerling_cost = c ("500", "1000", "1500", "2000")), nalternatives = 2, nblocks = 1, row.renames = FALSE, randomize = TRUE, seed =6965)

des2 <- rotation.design(attribute.names = list(Efficiency = c ("0", "1", "2", "3"), Productivity = c ("0", "1", "2", "3"), Productivity_characteristics = c ("0", "1", "2", "3"), Pond_management = c ("0", "1", "2", "3"), Fingerling_cost = c ("500", "1000", "1500", "2000")), nalternatives = 2, nblocks = 1, row.renames = FALSE, randomize = TRUE, seed =6965)

alt <- des2$alternatives  
alt1 <- alt$alt.1 
# Add "1" after variables' name
names(alt1)[names(alt1) == "Efficiency"] <- paste0("Efficiency1")
names(alt1)[names(alt1) == "Productivity"] <- paste0("Productivity1")
names(alt1)[names(alt1) == "Productivity_characteristics"] <- paste0("Productivity_characteristics1")
names(alt1)[names(alt1) == "Pond_management"] <- paste0("Pond_management1")
names(alt1)[names(alt1) == "Fingerling_cost"] <- paste0("Fingerling_cost1")

alt2 <- alt$alt.2
names(alt2)[names(alt2) == "Efficiency"] <- paste0("Efficiency2")
names(alt2)[names(alt2) == "Productivity"] <- paste0("Productivity2")
names(alt2)[names(alt2) == "Productivity_characteristics"] <- paste0("Productivity_characteristics2")
names(alt2)[names(alt2) == "Pond_management"] <- paste0("Pond_management2")
names(alt2)[names(alt2) == "Fingerling_cost"] <- paste0("Fingerling_cost2")

alt.all <- cbind(alt1,alt2)

alt.all <- alt.all[,-c(1,3,9:11)]

  
input1=read.csv("1.csv")

num <- length(unique(input1$ID))
alt.all.expand <- alt.all[rep(seq_len(nrow(alt.all)), times = num), ]

desmat1 <- make.design.matrix(choice.experiment.design = des1, optout = TRUE, categorical.attributes = c("Efficiency", "Productivity", "Productivity_characteristics", "Pond_management"), continuous.attributes = c("Fingerling_cost"), unlabeled = TRUE)

dataset <- make.dataset(respondent.dataset = input1, choice.indicators = c("q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", "q16"), design.matrix = desmat1)
choice <- dataset[,c(1,3:5)]
choice <- subset(choice,RES=="TRUE")

database <- cbind(choice,alt.all.expand)
database$Fingerling_cost1 <- as.numeric(as.character(database$Fingerling_cost1))
database$Fingerling_cost2 <- as.numeric(as.character(database$Fingerling_cost2))

### Vector of parameters, including any that are kept fixed in estimation
apollo_beta = c(asc = 0,
                sigma_asc = 0,
                mu_Efficiency_L0    = 0,
                sigma_Efficiency_L0 = 0,
                mu_Efficiency_L1    = 0,
                sigma_Efficiency_L1 = 0,
                mu_Efficiency_L2    = 0,
                sigma_Efficiency_L2 = 0,
                mu_Efficiency_L3    = 0,
                sigma_Efficiency_L3 = 0,
                mu_Productivity_L0    = 0,
                sigma_Productivity_L0 = 0,
                mu_Productivity_L1    = 0,
                sigma_Productivity_L1 = 0, 
                mu_Productivity_L2    = 0,
                sigma_Productivity_L2 = 0, 
                mu_Productivity_L3    = 0,
                sigma_Productivity_L3 = 0, 
                mu_Productivity_characteristics_L0    = 0,
                sigma_Productivity_characteristics_L0 = 0,
                mu_Productivity_characteristics_L1    = 0,
                sigma_Productivity_characteristics_L1 = 0,
                mu_Productivity_characteristics_L2    = 0,
                sigma_Productivity_characteristics_L2 = 0,
                mu_Productivity_characteristics_L3    = 0,
                sigma_Productivity_characteristics_L3 = 0,
                mu_Pond_management_L0    = 0,
                sigma_Pond_management_L0 = 0,
                mu_Pond_management_L1    = 0,
                sigma_Pond_management_L1 = 0,
                mu_Pond_management_L2    = 0,
                sigma_Pond_management_L2 = 0,
                mu_Pond_management_L3    = 0,
                sigma_Pond_management_L3 = 0,
                mu_Fingerling_cost    = 0,
                sigma_Fingerling_cost = 0)

### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c()

# ################################################################# #
#### DEFINE RANDOM COMPONENTS                                    ####
# ################################################################# #

### Set parameters for generating draws
apollo_draws = list(
  interDrawsType = "mlhs",
  interNDraws    = 100,
  interUnifDraws = c(),
  interNormDraws = c("draws_Efficiency_L0","draws_Efficiency_L1","draws_Efficiency_L2","draws_Efficiency_L3","draws_Productivity_L0","draws_Productivity_L1","draws_Productivity_L2","draws_Productivity_L3","draws_Productivity_characteristics_L0","draws_Productivity_characteristics_L1","draws_Productivity_characteristics_L2","draws_Productivity_characteristics_L3","draws_Pond_management_L0","draws_Pond_management_L1","draws_Pond_management_L2","draws_Pond_management_L3","draws_Fingerling_cost","draws_asc"),
  intraDrawsType = "mlhs",
  intraNDraws    = 0,
  intraUnifDraws = c(),
  intraNormDraws = c()
)

### Create random parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
  randcoeff = list()
  randcoeff[["b_Efficiency_L0"]] =mu_Efficiency_L0 + sigma_Efficiency_L0 * draws_Efficiency_L0 
  randcoeff[["b_Efficiency_L1"]] =mu_Efficiency_L1 + sigma_Efficiency_L1 * draws_Efficiency_L1 
  randcoeff[["b_Efficiency_L2"]] =mu_Efficiency_L2 + sigma_Efficiency_L2 * draws_Efficiency_L2 
  randcoeff[["b_Efficiency_L3"]] =mu_Efficiency_L3 + sigma_Efficiency_L3 * draws_Efficiency_L3 
  randcoeff[["b_Productivity_L0"]] =  mu_Productivity_L0 + sigma_Productivity_L0 * draws_Productivity_L0
  randcoeff[["b_Productivity_L1"]] =  mu_Productivity_L1 + sigma_Productivity_L1 * draws_Productivity_L1
  randcoeff[["b_Productivity_L2"]] =  mu_Productivity_L2 + sigma_Productivity_L2 * draws_Productivity_L2
  randcoeff[["b_Productivity_L3"]] =  mu_Productivity_L3 + sigma_Productivity_L3 * draws_Productivity_L3
  randcoeff[["b_Pond_management_L0"]] =  mu_Pond_management_L0 + sigma_Pond_management_L0 * draws_Pond_management_L0 
  randcoeff[["b_Pond_management_L1"]] =  mu_Pond_management_L1 + sigma_Pond_management_L1 * draws_Pond_management_L1 
  randcoeff[["b_Pond_management_L2"]] =  mu_Pond_management_L2 + sigma_Pond_management_L2 * draws_Pond_management_L2 
  randcoeff[["b_Pond_management_L3"]] =  mu_Pond_management_L3 + sigma_Pond_management_L3 * draws_Pond_management_L3 
  randcoeff[["b_Productivity_characteristics_L0"]] =  mu_Productivity_characteristics_L0 + sigma_Productivity_characteristics_L0 * draws_Productivity_characteristics_L0 
  randcoeff[["b_Productivity_characteristics_L1"]] =  mu_Productivity_characteristics_L1 + sigma_Productivity_characteristics_L1 * draws_Productivity_characteristics_L1 
  randcoeff[["b_Productivity_characteristics_L2"]] =  mu_Productivity_characteristics_L2 + sigma_Productivity_characteristics_L2 * draws_Productivity_characteristics_L2 
  randcoeff[["b_Productivity_characteristics_L3"]] =  mu_Productivity_characteristics_L3 + sigma_Productivity_characteristics_L3 * draws_Productivity_characteristics_L3 
  randcoeff[["b_Fingerling_cost"]] =  mu_Fingerling_cost + sigma_Fingerling_cost * draws_Fingerling_cost 
  randcoeff[["ec"]] =  sigma_asc * draws_asc
  
  return(randcoeff)
}

# ################################################################# #
#### GROUP AND VALIDATE INPUTS                                   ####
# ################################################################# #

apollo_inputs = apollo_validateInputs()

# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION                        ####
# ################################################################# #

apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
  
  ### Function initialisation: do not ange the following three commands
  ### AareaaFingerling_cost inputs and detaFingerling_cost after function exit
  apollo_attach(apollo_beta, apollo_inputs)
  on.exit(apollo_detach(apollo_beta, apollo_inputs))
  
  ### Create list of probabilities P
  P = list()
  
  ### List of utilities: these must use the same names as in mnl_seareaings, order is irrelevant
  V = list()
  V[['NB']]  = asc + ec
  V[['alt1']]  = b_Efficiency_L0 * (Efficiency1==0) + b_Efficiency_L1 * (Efficiency1==1) + b_Efficiency_L1 * (Efficiency1==2) +b_Efficiency_L1 * (Efficiency1==3) + 
    b_Productivity_L0 * (Productivity1==0)+b_Productivity_L1 * (Productivity1==1) +  b_Productivity_L2 * (Productivity1==2)+ b_Productivity_L3 * (Productivity1==3) + 
    b_Pond_management_L0 * (Pond_management1==0) +b_Pond_management_L1 * (Pond_management1==1) + b_Pond_management_L2 * (Pond_management1==2)+b_Pond_management_L3 * (Pond_management1==3) + 
    b_Productivity_characteristics_L0 * (Productivity_characteristics1==0) +b_Productivity_characteristics_L1 * (Productivity_characteristics1==1) + b_Productivity_characteristics_L2 * (Productivity_characteristics1==2)+b_Productivity_characteristics_L3 * (Productivity_characteristics1==3) + b_Fingerling_cost * Fingerling_cost1 
  V[['alt2']]  = b_Efficiency_L0 * (Efficiency2==0) + b_Efficiency_L1 * (Efficiency2==1) + b_Efficiency_L1 * (Efficiency2==2) +b_Efficiency_L1 * (Efficiency2==3) + 
    b_Productivity_L0 * (Productivity2==0) + b_Productivity_L1 * (Productivity2==1) +  b_Productivity_L2 * (Productivity2==2)+ b_Productivity_L3 * (Productivity2==3) + 
    b_Pond_management_L0 * (Pond_management2==0) +  b_Pond_management_L1 * (Pond_management2==1) + b_Pond_management_L2 * (Pond_management2==2)+b_Pond_management_L3 * (Pond_management2==3) + 
    b_Productivity_characteristics_L0 * (Productivity_characteristics2==0) +b_Productivity_characteristics_L1 * (Productivity_characteristics2==1) + b_Productivity_characteristics_L2 * (Productivity_characteristics2==2)+b_Productivity_characteristics_L3 * (Productivity_characteristics2==3) + b_Fingerling_cost * Fingerling_cost2
  
  
  ### Define seareaings for MNL model component
  mnl_seareaings = list(
    alternatives  = c(alt1="1", alt2="2", NB="3"),
    avail         = list(alt1=1, alt2=1, NB=1),
    choiceVar     = ALT,
    utilities     = V
  )
  
  ### Compute probabilities using MNL model
  P[["model"]] = apollo_mnl(mnl_seareaings, functionality)
  
  ### Take product across observation for same individual
  P = apollo_panelProd(P, apollo_inputs, functionality)
  
  ### Average across inter-individual draws
  P = apollo_avgInterDraws(P, apollo_inputs, functionality)
  
  ### Prepare and return outputs of function
  P = apollo_prepareProb(P, apollo_inputs, functionality)
  return(P)
}

# ################################################################# #
#### MODEL ESTIMATION                                            ####
# ################################################################# #

model = apollo_estimate(apollo_beta, apollo_fixed,apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL OUTPUTS                                               ####
# ################################################################# #

# ----------------------------------------------------------------- #
#---- FORMAareaED OUTPUT (TO SCREEN)                               ----
# ----------------------------------------------------------------- #

apollo_modelOutput(model)
Thank you very much in advance for your kind help.

Best regards,
Joe
stephanehess
Site Admin
Posts: 998
Joined: 24 Apr 2020, 16:29

Re: Error of "Parameter does not influence the log-likelihood of model"

Post by stephanehess »

Hi

simple, you have not used the corresponding coefficient in the model

You have

randcoeff[["b_Efficiency_L2"]] =mu_Efficiency_L2 + sigma_Efficiency_L2 * draws_Efficiency_L2

but in the actual model, you never use b_Efficiency_L2, you seem to only use b_Efficiency_L0 and b_Efficiency_L1
--------------------------------
Stephane Hess
www.stephanehess.me.uk
JoeSu
Posts: 4
Joined: 10 Mar 2022, 00:18

Re: Error of "Parameter does not influence the log-likelihood of model"

Post by JoeSu »

Dear Prof. Hess

I am very sorry for my stupid mistake.

The module works now.

Thank you and best regards,
Joe
Post Reply