Important: Read this before posting to this forum

  1. This forum is for questions related to the use of Apollo. We will answer some general choice modelling questions too, where appropriate, and time permitting. We cannot answer questions about how to estimate choice models with other software packages.
  2. There is a very detailed manual for Apollo available at http://www.ApolloChoiceModelling.com/manual.html. This contains detailed descriptions of the various Apollo functions, and numerous examples are available at http://www.ApolloChoiceModelling.com/examples.html. In addition, help files are available for all functions, using e.g. ?apollo_mnl
  3. Before asking a question on the forum, users are kindly requested to follow these steps:
    1. Check that the same issue has not already been addressed in the forum - there is a search tool.
    2. Ensure that the correct syntax has been used. For any function, detailed instructions are available directly in Apollo, e.g. by using ?apollo_mnl for apollo_mnl
    3. Check the frequently asked questions section on the Apollo website, which discusses some common issues/failures. Please see http://www.apollochoicemodelling.com/faq.html
    4. Make sure that R is using the latest official release of Apollo.
  4. If the above steps do not resolve the issue, then users should follow these steps when posting a question:
    1. provide full details on the issue, including the entire code and output, including any error messages
    2. posts will not immediately appear on the forum, but will be checked by a moderator first. This may take a day or two at busy times. There is no need to submit the post multiple times.

Posterior estimation latent class model with continuous random heterogeneity

Ask questions about post-estimation functions (e.g. prediction, conditionals, etc) or other processing of results.
Post Reply
fayyazkhan
Posts: 6
Joined: 27 Apr 2020, 01:42

Posterior estimation latent class model with continuous random heterogeneity

Post by fayyazkhan »

Hi Stephane and David,

I have estimated a latent class mixed logit with normal distribution for alternative specific constants (two classes, with only constant in the class allocation model). I would like to compute posterior values for different covariates (to profile individuals by figuring out which individuals belong to which class). Because of the random parameter, I cannot use apollo_lcConditionals (as this can only be used for latent class models without continuous random heterogeneity). I came across the below question on this forum, where Stephane has written a code for estimating posterior expected values of random coefficients.

http://www.apollochoicemodelling.com/fo ... ?f=16&t=50

I'm trying to implement the code in the above question for covariates in the class allocation model (e.g., gender), how should I change the last part of the above code. Many thanks.

Best regards,
Fayyaz



for(j in 1:length(randcoeff)){
b=randcoeff[[j]]
b <- rowsum(b, group=database[,apollo_control$indivID])
b=b/obsPerIndiv
P_use=(names(randcoeff)[j]%in%class1_pars)*P[[1]]+(names(randcoeff)[j]%in%class2_pars)*P[[2]]+(names(randcoeff)[j]%in%class3_pars)*P[[3]]
bn=(rowSums(b*P_use))/rowSums(P_use)
bns=sqrt(rowSums(P_use*(b-bn)^2)/(rowSums(P_use)))
conditionals[[names(randcoeff)[j]]]=cbind(unique(database[,apollo_control$indivID]),bn,bns)
colnames(conditionals[[names(randcoeff)[j]]])=c("ID","post. mean","post. sd")
rownames(conditionals[[names(randcoeff)[j]]])=c()
}
stephanehess
Site Admin
Posts: 974
Joined: 24 Apr 2020, 16:29

Re: Posterior estimation latent class model with continuous random heterogeneity

Post by stephanehess »

Hi

apologies for the slow reply.

Could you share your model code, please?

Thanks

Stephane
--------------------------------
Stephane Hess
www.stephanehess.me.uk
fayyazkhan
Posts: 6
Joined: 27 Apr 2020, 01:42

Re: Posterior estimation latent class model with continuous random heterogeneity

Post by fayyazkhan »

Hi Stephane,

Thanks for your reply. Please see the below code.

Best,
Fayyaz

Code: Select all


# ################################################################# #
#### LOAD LIBRARY AND DEFINE CORE SETTINGS                       ####
# ################################################################# #

### Clear memory
rm(list = ls())

### Load Apollo library
library(apollo)


### Initialise code
apollo_initialise()

### Set core controls
apollo_control = list(
  modelName  ="EC_LC_2_v1_0",
  modelDescr ="EC Latent class model with two classes no covariates",
  mixing     = TRUE,
  indivID    ="id",
  nCores = 3
)

# ################################################################# #
#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                     ####
# ################################################################# #

database = read.csv("data_2.csv",header=TRUE) # reads csv files


# ################################################################# #
#### DEFINE MODEL PARAMETERS                                     ####
# ################################################################# #

### Vector of parameters, including any that are kept fixed in estimation
apollo_beta=c(mu_POSTIE_1             = 0.58729,
              mu_POSTIE_2             = 1.01714,
              POSTIE_nosafe_1         =-1.45606,
              POSTIE_nosafe_2         =-0.94492,
              POSTIE_regional_1       = 0.34415,
              POSTIE_regional_2       = 1.59364,
              mu_DRONE_1              =-0.48321,
              mu_DRONE_2              = 1.59027,
              DRONE_value100_1        = 0.13095,
              DRONE_value100_2        =-0.05695,
              DRONE_nosafe_1          =-2.37235,
              DRONE_nosafe_2          =-1.20607,
              LOCKER                  = 0.00000,
              LOCKER_value100_1       = 0.11362,
              LOCKER_value100_2       = 1.36205,
              SPEED5bd                = 0.00000,
              SPEED3bd_1              = 0.40906,
              SPEED3bd_2              = 0.26957,
              SPEED2bd_1              = 0.71360,
              SPEED2bd_2              = 0.39687,
              SPEEDnextbd_1           = 0.84788,
              SPEEDnextbd_2           = 0.93944,
              SPEEDsamed_1            = 1.80863,
              SPEEDsamed_2            = 0.91754,
              SPEED2hr_1              = 2.02390,
              SPEED2hr_2              = 0.82560,
              METHODfd                = 0.00000,
              METHODsafe_1            = 0.31718,
              METHODsafe_2            = 0.01002,
              METHODsig_1             = 0.15320,
              METHODsig_2             = 0.50737,
              METHODsig_nosafe_1      = 0.98429,
              METHODsig_nosafe_2      = 0.03496,
              METHODsig_lockdown_1    =-0.44788,
              METHODsig_lockdown_2    =-1.19845,
              WINDOWno                = 0.00000,
              WINDOW2hr_1             =-0.13254,
              WINDOW2hr_2             = 0.02532,
              WINDOWday_nosafe_1      = 0.16347,
              WINDOWday_nosafe_2      = 0.61101,
              WINDOW1hr_1             = 0.08986,
              WINDOW1hr_2             = 0.18075,
              WINDOW30min_1           = 0.04719,
              WINDOW30min_2           =-0.14218,
              WINDOWeven_1            =-0.19406,
              WINDOWeven_2            =-0.11872,
              COST_1                  =-0.22698,
              COST_2                  =-1.20887,
              COST_value50_1          = 0.07659,
              COST_value50_2          = 0.46906,
              COST_value100_1         = 0.20893,
              COST_value100_2         = 0.73285,
              Income_elas_1           =-0.19298,
              Income_elas_2           =-0.11279,
              COST_incomeNR_1         =-0.17783,
              COST_incomeNR_2         =-0.87834,
              delta_1                 = 0.46851,
              delta_2                 = 0.00000,
              sig_POSTIE_1            = 2.28863,
              sig_POSTIE_2            = 1.49950,
              sig_DRONE_1             =-3.04564,
              sig_DRONE_2             =-2.00225,
              ORDER1_1                = 0.180242,
              ORDER1_2                = 0.075402,
              ORDER2_1                = 0.094992,
              ORDER2_2                = 0.047412,
              ORDER3_1                = 0.000000,
              ORDER3_2                = 0.000000,
              LAMBDA_regional_1       = 0.947236,
              LAMBDA_regional_2       = 1.135653
)

### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c("LOCKER","SPEED5bd","METHODfd","WINDOWno","ORDER3_1","ORDER3_2",
                 "delta_2")

# ################################################################# #
#### DEFINE RANDOM COMPONENTS                                    ####
# ################################################################# #

apollo_draws = list(
  interDrawsType = "sobol",
  interNDraws    = 500,
  interUnifDraws = c(),
  interNormDraws = c("postie","drone"),
  intraDrawsType = "halton",
  intraNDraws    = 0,
  intraUnifDraws = c(),
  intraNormDraws = c()
)

### Create random parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
  randcoeff = list()
  
  
  randcoeff[["POSTIE_1"]]        =  mu_POSTIE_1  +  sig_POSTIE_1  *   postie 
  randcoeff[["POSTIE_2"]]        =  mu_POSTIE_2  +  sig_POSTIE_2  *   postie 
  randcoeff[["DRONE_1"]]         =  mu_DRONE_1   +  sig_DRONE_1   *   drone 
  randcoeff[["DRONE_2"]]         =  mu_DRONE_2   +  sig_DRONE_2   *   drone 
  
  
  
  return(randcoeff)
}
# ################################################################# #
#### DEFINE LATENT CLASS COMPONENTS                              ####
# ################################################################# #

apollo_lcPars=function(apollo_beta, apollo_inputs){
  lcpars = list()
  lcpars[["POSTIE"]]               = list(POSTIE_1            ,    POSTIE_2)
  lcpars[["POSTIE_nosafe"]]        = list(POSTIE_nosafe_1     ,    POSTIE_nosafe_2)
  lcpars[["POSTIE_regional"]]      = list(POSTIE_regional_1   ,    POSTIE_regional_2)
  lcpars[["DRONE"]]                = list(DRONE_1             ,    DRONE_2)
  lcpars[["DRONE_value100"]]       = list(DRONE_value100_1    ,    DRONE_value100_2)
  lcpars[["DRONE_nosafe"]]         = list(DRONE_nosafe_1      ,    DRONE_nosafe_2)
  lcpars[["LOCKER_value100"]]      = list(LOCKER_value100_1   ,    LOCKER_value100_2)
  lcpars[["SPEED3bd"]]             = list(SPEED3bd_1          ,    SPEED3bd_2)
  lcpars[["SPEED2bd"]]             = list(SPEED2bd_1          ,    SPEED2bd_2)
  lcpars[["SPEEDnextbd"]]          = list(SPEEDnextbd_1       ,    SPEEDnextbd_2)
  lcpars[["SPEEDsamed"]]           = list(SPEEDsamed_1        ,    SPEEDsamed_2)
  lcpars[["SPEED2hr"]]             = list(SPEED2hr_1          ,    SPEED2hr_2)
  lcpars[["METHODsafe"]]           = list(METHODsafe_1        ,    METHODsafe_2)
  lcpars[["METHODsig"]]            = list(METHODsig_1         ,    METHODsig_2)
  lcpars[["METHODsig_nosafe"]]     = list(METHODsig_nosafe_1  ,    METHODsig_nosafe_2)
  lcpars[["METHODsig_lockdown"]]   = list(METHODsig_lockdown_1,    METHODsig_lockdown_2)  
  lcpars[["WINDOW2hr"]]            = list(WINDOW2hr_1         ,    WINDOW2hr_2)
  lcpars[["WINDOWday_nosafe"]]     = list(WINDOWday_nosafe_1  ,    WINDOWday_nosafe_2)
  lcpars[["WINDOW1hr"]]            = list(WINDOW1hr_1         ,    WINDOW1hr_2)
  lcpars[["WINDOW30min"]]          = list(WINDOW30min_1       ,    WINDOW30min_2)
  lcpars[["WINDOWeven"]]           = list(WINDOWeven_1        ,    WINDOWeven_2)
  lcpars[["COST"]]                 = list(COST_1              ,    COST_2)
  lcpars[["COST_value50"]]         = list(COST_value50_1      ,    COST_value50_2)
  lcpars[["COST_value100"]]        = list(COST_value100_1     ,    COST_value100_2)
  lcpars[["Income_elas"]]          = list(Income_elas_1       ,    Income_elas_2)
  lcpars[["COST_incomeNR"]]        = list(COST_incomeNR_1     ,    COST_incomeNR_2)
  lcpars[["ORDER1"]]               = list(ORDER1_1            ,        ORDER1_2         )
  lcpars[["ORDER2"]]               = list(ORDER2_1            ,        ORDER2_2         )
  lcpars[["ORDER3"]]               = list(ORDER3_1            ,        ORDER3_2         )
  lcpars[["LAMBDA_regional"]]      = list(LAMBDA_regional_1   ,        LAMBDA_regional_2)
  
  
  
  
  V=list()
  V[["class_1"]] = delta_1 
  V[["class_2"]] = delta_2
  
  classAlloc_settings = list(
    classes      = c(class_1=1, class_2=2), 
    utilities    = V
  )
  
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
  
  return(lcpars)
}

# ################################################################# #
#### GROUP AND VALIDATE INPUTS                                   ####
# ################################################################# #

apollo_inputs = apollo_validateInputs()

# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION                        ####
# ################################################################# #

apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
  
  ### Attach inputs and detach after function exit
  apollo_attach(apollo_beta, apollo_inputs)
  on.exit(apollo_detach(apollo_beta, apollo_inputs))
  
  ### Create list of probabilities P
  P = list()
  
  ### Define settings for MNL model component
  mnl_settings = list(
    alternatives  = c(postie=1, drone=2, locker=3), 
    avail         = 1, 
    choiceVar     = choice
  )
  
  
  ### Loop over classes
  for(s in 1:2){
    
    ### Compute class-specific utilities
    V = list()
    V[['postie']]  = LAMBDA_regional[[s]]^(metro==0)  * ( ORDER1[[s]] * (porder==1) + ORDER2[[s]] * (porder==2) + ORDER3[[s]] * (porder==3) + POSTIE[[s]] + POSTIE_nosafe[[s]] * (safepostie==0) + POSTIE_regional[[s]] * (metro==0)
                                                          + SPEEDnextbd[[s]] * (pspeed==4) + SPEED2bd[[s]] * (pspeed==5)+ SPEED3bd[[s]] * (pspeed==6) + SPEED5bd * (pspeed==1) 
                                                          + SPEED2hr[[s]] * (pspeed==2) + SPEEDsamed[[s]] * (pspeed==3) 
                                                          + METHODsafe[[s]] * (pmethod==1) + METHODsig[[s]] * (pmethod==2) + METHODfd * (pmethod==3) + METHODsig[[s]] * (pmethod==2) + METHODsig_nosafe[[s]] * (pmethod==2) * (safepostie==0) + METHODsig_lockdown[[s]] * (pmethod==2) * (pilot==0)
                                                          + WINDOWno * (pwindow==1) + WINDOW30min[[s]] * (pwindow==2) + WINDOW1hr[[s]] * (pwindow==3) + WINDOW2hr[[s]] * (pwindow==4) + WINDOWday_nosafe[[s]] * (pwindow==2) * (safepostie==0) + WINDOWday_nosafe[[s]] * (pwindow==3) * (safepostie==0) + WINDOWday_nosafe[[s]] * (pwindow==4) * (safepostie==0) + WINDOWeven[[s]] * (pwindow==5)
                                                          + (householdincome<12)  * (COST[[s]]          *  pcost + COST_value50[[s]]          * pcost * pvalue50 + COST_value100[[s]]          * pcost * pvalue100 ) * (con_hhincome/mincome)^Income_elas[[s]] 
                                                          + (householdincome==12) * COST_incomeNR[[s]] *  pcost ) 
    V[['drone']]   = LAMBDA_regional[[s]]^(metro==0)   * ( ORDER1[[s]] * (dorder==1) + ORDER2[[s]] * (dorder==2) + ORDER3[[s]] * (dorder==3) + DRONE[[s]] + DRONE_nosafe[[s]] * (safedrone==0) + DRONE_value100[[s]] * pvalue100 
                                                           + SPEEDnextbd[[s]] * (dspeed==4) + SPEED2bd[[s]] * (dspeed==5) + SPEED3bd[[s]] * (dspeed==6) + SPEED5bd * (dspeed==1) 
                                                           + SPEED2hr[[s]] * (dspeed==2) + SPEEDsamed[[s]] * (dspeed==3)
                                                           + METHODsafe[[s]] * (dmethod==1) + METHODsig[[s]] * (dmethod==2) + METHODfd * (dmethod==3) 
                                                           + WINDOWno * (dwindow==1) + WINDOW30min[[s]] * (dwindow==2) + WINDOW1hr[[s]] * (dwindow==3) + WINDOW2hr[[s]] * (dwindow==4) + WINDOWday_nosafe[[s]] * (dwindow==2) * (safedrone==0) + WINDOWday_nosafe[[s]] * (dwindow==3) * (safedrone==0) + WINDOWday_nosafe[[s]] * (dwindow==4) * (safedrone==0) + WINDOWeven[[s]] * (dwindow==5)
                                                           + (householdincome<12)  * (COST[[s]]          *  dcost + COST_value50[[s]]          * dcost * pvalue50 + COST_value100[[s]]          * dcost * pvalue100 ) * (con_hhincome/mincome)^Income_elas[[s]] 
                                                           + (householdincome==12) * COST_incomeNR[[s]] * dcost )                                   
    V[['locker']]  = LAMBDA_regional[[s]]^(metro==0)   * ( ORDER1[[s]] * (lorder==1) + ORDER2[[s]] * (lorder==2) + ORDER3[[s]] * (lorder==3) + LOCKER + LOCKER_value100[[s]] * pvalue100
                                                           + SPEEDnextbd[[s]] * (lspeed==4) + SPEED2bd[[s]] * (lspeed==5) + SPEED3bd[[s]] * (lspeed==6) + SPEED5bd * (lspeed==1) + SPEED2hr[[s]] * (lspeed==2) +SPEEDsamed[[s]] * (lspeed==3) 
                                                           + (householdincome<12)  * (COST[[s]]          *  lcost + COST_value50[[s]]          * lcost * pvalue50 + COST_value100[[s]]          * lcost * pvalue100 ) * (con_hhincome/mincome)^Income_elas[[s]] 
                                                           + (householdincome==12) * COST_incomeNR[[s]] * lcost ) 
    
    
    
    mnl_settings$utilities = V
    mnl_settings$componentName = paste0("Class_",s)
    
    ### Compute within-class choice probabilities using MNL model
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)
    
    ### Take product across observation for same individual
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], apollo_inputs ,functionality)
    
    ### Average across inter-individual draws within classes
    P[[paste0("Class_",s)]] = apollo_avgInterDraws(P[[paste0("Class_",s)]], apollo_inputs, functionality)
  }
  
  ### Compute latent class model probabilities
  lc_settings  = list(inClassProb = P, classProb=pi_values)
  P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)
  
  
  ### Prepare and return outputs of function
  P = apollo_prepareProb(P, apollo_inputs, functionality)
  return(P)
}


# ################################################################# #
#### EM ESTIMATION FOR COVARIANCE MATRIX                         ####
# ################################################################# #

model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

# ################################################################# #
#### MODEL OUTPUTS                                               ####
# ################################################################# #

# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO SCREEN)                               ----
# ----------------------------------------------------------------- #

apollo_modelOutput(model,modelOutput_settings=list(printClassical=TRUE,printT1=TRUE))

# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO FILE, using model name)               ----
# ----------------------------------------------------------------- #

apollo_saveOutput(model,saveOutput_settings=list(printClassical=TRUE,printT1=TRUE))

stephanehess
Site Admin
Posts: 974
Joined: 24 Apr 2020, 16:29

Re: Posterior estimation latent class model with continuous random heterogeneity

Post by stephanehess »

Fayyaz

apologies for the slow reply. If you can share the data with me, then I'll try to prepare the code for you

Stephane
--------------------------------
Stephane Hess
www.stephanehess.me.uk
Post Reply