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Abstract

The community of choice modellers has expanded substantially over recent years, cover-
ing many disciplines and encompassing users with very different levels of econometric and
computational skills. This paper presents an introduction to Apollo, a powerful new freeware
package for R that aims to provide a comprehensive set of modelling tools for both new and
experienced users. Apollo also incorporates numerous post-estimation tools, allows for both
classical and Bayesian estimation, and permits advanced users to develop their own routines
for new model structures.
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1 Introduction

A brief explanation is needed as to our choice of the
name Apollo. After failing to come up with a clever

acronym, we turned to Greek mythology. The
obvious choice would have been Cassandra, with her
gift of prophecy and the curse that nobody listened
to her (a bit like choice modellers trying to sell their
ideas to policy makers). Alas, the name is already
used for a large database package, so we resorted to
Apollo, the Greek god of prophecy who gave this

gift to Cassandra in the first place.

Choice modelling techniques have been used
across different disciplines for over four decades
(see McFadden 2000 for a retrospective and
Hess and Daly 2014 for recent contributions
and applications across fields). For the ma-
jority of that time, the number of users of es-
pecially the most advanced models was rather
small, and similarly, a small number of soft-
ware packages was used by this community. In
the last two decades, the pool of users of choice
models has expanded dramatically, in terms of
their number as well as the breadth of disci-
plines covered. At the same time, we have seen
the development of new modelling approaches,
and gains in computer performance as well as

software availability have given an ever broader group of users access to ever more advanced
models.

These developments have also seen a certain fragmentation of the community in terms of
software, which in part runs along discipline lines. Notwithstanding the most advanced users
who develop their own code for often their own models, there is first a split between the users
of commercial software and those using freeware tools. Commercial packages have historically
been computationally more powerful but may have more limitations in terms of available model
structures or the possibility for customisation. On the other hand, freeware packages may have
limitations in terms of performance and user friendliness but may benefit from more regular
developments to accommodate new model structures.
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A further key differentiation between packages is the link between user inputs and interface
and the actual underlying methodology. Many existing packages, both freeware and commercial,
are black box tools where the user has little or no knowledge of what goes on “under the hood”.
While this has made advanced models accessible to a broader group of users, a disconnect between
theory and software not only increases the risk of misinterpretations and misspecifications, but
can also hide relevant nuances of the modelling process and mistakenly give the impression that
choice models are “easy tools” to use. On the other hand, software that relies on users to code all
components from scratch arguably imposes too high a bar in terms of access.

Existing software also almost exclusively allows the use of only either classical estimation tech-
niques or Bayesian techniques. This fragmentation again runs largely in parallel with discipline
boundaries and has only served to further contribute to the lack of interaction/dialogue between
the classical and Bayesian communities. A final difference arises in terms of software environment.
While commercial software usually provides a custom user interface, freeware options in general
(though not exclusively) rely on existing statistical or econometric software and are made avail-
able as packages within these. The latter at times means that freeware packages are not really
free to use (if the host software is not), while there are also cases of software being accessible only
in either Windows or Linux, not both.

The above points served in large part as the motivation for the development of Apollo. Our
aims were:

Free access: Apollo is a completely free package1 which does not rely on commercial statistical
software as a host environment.
Big community: Apollo relies on R, a free software environment for statistical computing and
graphics, which is very widely used across disciplines and works well across different operating
systems (R Core Team, 2017)2.
Transparent, yet accessible: Apollo is neither a blackbox nor does it require expert econo-
metric skills. The user can see as much or as little detail of the underlying methodology as

1Apollo is licensed under GNU GENERAL PUBLIC LICENSE v2 (GPL-2) - https://cran.r-project.org/
web/licenses/GPL-2. It is provided free of charge and comes WITHOUT ANY WARRANTY of any kind. In no
event will the authors or their employers be liable to any party for any damages resulting from any use of Apollo.

2In the remainder of this paper, we do not provide details on common R functions and syntax used in the code,
or how to run R code, and the reader is instead referred to R Core Team (2017). Most users will run R from a
shell such as RStudio (RStudio Team, 2015). A full Apollo model file, or any other R script, can also be run from
the command line, without accessing R directly. This can be useful when running many scripts unattended, or
when submitting jobs to a computer cluster. The command to do this changes depending on the operation system
and the local directory structure. In Linux, the command is as follows: R CMD BATCH model.R. In Windows, the
command is for example as follows: "C:\Program Files\R\R-3.5.1\bin\R.exe" CMD BATCH model.R. Note that
in both cases the working directory should be set within the model file using the setwd function. The output that
would normally be printed to the R Terminal will instead be written in a file called model.Rout, which can be
opened with any plain text editor. For the syntax shown in this paper, it is just worth noting that in R, a line
starting with one or more # characters is a comment. We tend to use a single # for optional lines that a user can
comment in and out, and ### for actual comments. In addition, two other points are worth raising. In complex
models, the R syntax file for Apollo can become quite large, and a user may wish to split this into separate files, e.g.
one for loading and processing the data, one for the actual model definition, etc, and then have a master file which
calls the individual files (using source). Secondly, for the predefined functions, the order of arguments passed to
the function should be kept in the order specified in this paper.

https://cran.r-project.org/web/licenses/GPL-2
https://cran.r-project.org/web/licenses/GPL-2
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desired, but the link between inputs and outputs remains.
Ease of use: Apollo combines easy to use R functions with new intuitive functions without
unnecessary jargon or complexity.
Modular nature: Apollo uses the same code structure independently of whether the simplest
multinomial logit model is to be estimated, or a complex structure using random coefficients
and combining multiple model components.
Fully customisable: Apollo provides functions for many well known models but the user is
able to add new structures and still make use of the overall code framework. This for example
extends to coding expectation-maximisation routines.
Discrete and continuous: Apollo incorporates functions not just for commonly used discrete
choice models but also for a family of models that looks jointly at discrete and continuous
choices.
Novel structures: Apollo goes beyond standard choice models by incorporating the ability
to estimate Decision Field Theory (DFT) models, a popular accumulator model from mathe-
matical psychology.
Classical and Bayesian: Apollo does not restrict the user to either classical or Bayesian
estimation but easily allows changing from one to the other.
Easy multi-threading: Apollo allows users to split the computational work across multiple
processors without making changes to the model code.
Not limited to estimation: Apollo provides a number of pre and post-estimation tools, in-
cluding diagnostics as well as prediction/forecasting capabilities and posterior analysis of
model estimates.

While Apollo is easy to use, we also remain of the opinion that users of choice modelling software
should understand the actual process that happens during estimation. For this reason, the user
needs to explicitly include or exclude calls to specific functions that are model and dataset specific.
For example, in the case of repeated choice data, the user needs to include a call to a function
that takes the product across choices for the same person (apollo_panelProd). Or in the case
of a mixed logit model, the user needs to include a call to a function that averages across draws
(apollo_avgInterDraws and/or apollo_avgIntraDraws). If calls to these functions are missing
when needed, or if a user makes a call to a function that should not be used in the specific model,
the code will fail, and provide the user with feedback about why this happened. This is in our
view much better than the software permitting users to make mistakes and fixing them behind
the scenes.

Apollo is the culmination of many years of development of individual choice modelling routines,
starting with code developed by Hess while at Imperial College (cf. Hess, 2005) using Ox (Doornik,
2001). This code was gradually transitioned to R at the University of Leeds, with substantial
further developments once Palma joined the team in Leeds, bringing with him ideas developed at
Pontificia Universidad Católica de Chile (cf. Palma, 2016). No code is an island, and we have been
inspired especially by ALogit (ALogit, 2016) and Biogeme (Bierlaire, 2003), and Apollo mirrors
at least some of their features.

This paper presents a brief introduction to the capabilities of Apollo. We focus on the case
of a hybrid choice model so as to give an illustration of the functionalities of the package. We
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illustrate this using both classical and Bayesian estimation and also explain a number of pre-
estimation and post-estimation functions. Of course, in the context of an academic paper, we
can only scrape the surface of the full level of detail, and furthermore, software packages change
over time. For this reason, a more detailed manual (which also shows full details on function
inputs) along with numerous examples (with data) and a user forum is available on the Apollo
website (www.ApolloChoiceModelling.com). The syntax in the present paper is for Apollo version
0.0.8, but should remain forward compatible where not otherwise noted in the online manual. We
strongly recommend prospective users to study the actual manual in detail rather than just relying
on the short overview in the present paper.

This paper does not include any comparisons with other packages in terms of capabilities or
speed, so as not to risk misrepresentations but also given the growing number of freeware tools,
some of which we might not be aware of. The code has been widely tested to ensure accuracy. In
our view, any speed comparison offers little practical benefit. For simple models, there is a clear
advantage for highly specialised code, while, for complex models, any benchmarking is impacted
substantially by the specific implementation and degree of optimisation used.

The remainder of this paper is organised as follows. The following section briefly talks about
installation. Section 3 discusses the econometric setup for our empirical example. Section 4 then
presents the hybrid choice model application using classical estimation, with the Bayesian version
covered in Section 5. A number of other functions are discussed in Section 6 before we present a
summary in Section 7.

2 Installing Apollo

Apollo runs in R, with a minimum R version of 3.1.0. The easiest way to install Apollo is directly
from CRAN using

install.packages("apollo")

This requires a working internet connection, but it has the benefit of installing all dependencies, i.e.
other packages used by Apollo, automatically. Users of macOS (i.e. Apple computers) are advised
to select the binary version of the package when prompted during installation. Alternatively, the
source code of Apollo can be downloaded from www.ApolloChoiceModelling.com or from CRAN
and Apollo can then be compiled from source.

Users are encouraged to check for updated versions of the package every few months. Updates,
when available, can be acquired by simply re-installing the package. Installation from CRAN will
install the latest release. Previous releases will be available from the software website, where users
also have access to versions with new features that are under development prior to a full release.
These versions need to be compiled locally, and users require Rtools for this purpose.

3 Empirical example setup

In this section, we describe the setup of the empirical example used in the remainder of this
paper. The data file (apollo_drugChoiceData.csv) and the source files for the model using

www.ApolloChoiceModelling.com
www.ApolloChoiceModelling.com
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classical (hybrid_model_classical.r) or Bayesian (hybrid_model_bayesian.r) estimation are
available from the software website (www.ApolloChoiceModelling.com).

3.1 Data

We use a synthetic stated preference (SP) dataset looking at drug choices for the treatment of
headaches for 1, 000 individuals. For each person, the data contains 10 SP tasks, each giving a
choice between four alternatives, the first two being products by recognised drug companies while
the final two are generic products. In each choice task, a full ranking of the four alternatives
is given. The drugs are described in terms of brand (two recognised brands and three generic
brands), country of origin (six countries), drug features (three types of features), risk of side
effects and price. The possible levels for the attributes differ between the first two (branded) and
last two (generic) alternatives. For each individual, the dataset additionally contains answers to
four attitudinal questions as well as information on whether an individual is a regular user, their
education and their age. A summary of the data is shown in Table 1.

3.2 Model specification

We next describe the structure of our hybrid choice model (see Abou-Zeid and Ben-Akiva, 2014,
for a recent overview), where we look at the implementation of a model with a single latent
variable but with additional random and deterministic heterogeneity in the utility functions3.

We use a dummy coded specification for the three categorical variables, along with a continuous
specification for risk and cost. We specify a structural model for the latent variable that uses the
three socio-demographic characteristics included in the data, and then use this latent variable in
the utilities for the two branded alternatives as well as in the measurement models for the four
attitudinal indicators. We additionally incorporate the same socio-demographic characteristics
directly in the utility for the two branded alternatives, with brand-specific parameters, and also
make the brand parameters for the Novum and Artemis brands random, in line with best practice
for hybrid choice models (see theoretical discussions in Vij and Walker 2016 and an application
in Kløjgaard and Hess 2014). We use an ordered logit model for the indicators, as discussed by
Daly et al. (2012b).

Figure 1 presents the structure of the model. We use a subscript n to refer to individual decision
makers (n=1,. . .,N ; where N=1,000), t to refer to tasks (t=1,. . .,T ; where T=10), and j to refer
to alternatives (j=1,. . .,J ; where J=4). We have individual specific responses to attitudinal
questions (subscript n) and observation specific choice outcomes (subscript nt). Similarly, the
error terms in the latent variable and the first two brand parameters are individual-specific. In
Figure 1, we do not show the additional observation-specific error terms in the choice model and
measurement models.

3Different specifications of the model would of course be possible, but this example is only included for the sake
of illustration of the code.

www.ApolloChoiceModelling.com
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Table 1: Data dictionary for apollo_drugChoiceData.csv

Individuals 1,000
Observations 10,000

Variable Description Values
ID Unique respondent ID 1 to 1,000

task Index for SP choice tasks 1 to 10
best first ranked alternative 1 to 4

second_pref second ranked alternative 1 to 4
third_pref third ranked alternative 1 to 4

worst worst ranked alternative 1 to 4
brand_1 brand for first alternative Artemis; Novum

country_1 country for first alternative Switzerland; Denmark; USA
char_1 characteristics for first alternative standard; fast acting; double strength

side_effects_1 rate of side effects for first alternative
(out of 100,000)

Min: 1, mean: 37, max: 100

price_1 price (£) for first alternative Min: 2.25, mean: 3.15, max: 4.5
brand_2 brand for second alternative Artemis; Novum

country_2 country for second alternative Switzerland; Denmark; USA
char_2 characteristics for second alternative standard; fast acting; double strength

side_effects_2 rate of side effects for second alterna-
tive (out of 100,000)

Min: 1, mean: 37, max: 100

price_2 price (£) for second alternative Min: 2.25, mean: 3.15, max: 4.5
brand_3 brand for third alternative BestValue; Supermarket; PainAway

country_3 country for third alternative USA; India; Russia; Brazil
char_3 characteristics for third alternative standard; fast acting

side_effects_3 rate of side effects for third alternative
(out of 100,000)

Min: 10, mean: 370, max: 1,000

price_3 price (£) for third alternative Min: 0.75, mean: 1.75, max: 2.5
brand_4 brand for fourth alternative BestValue; Supermarket; PainAway

country_4 country for fourth alternative USA; India; Russia; Brazil
char_4 characteristics for fourth alternative standard; fast acting

side_effects_4 rate of side effects for fourth alternative
(out of 100,000)

Min: 10, mean: 370, max: 1,000

price_4 price (£) for fourth alternative Min: 0.75, mean: 1.75, max: 2.5
regular_user dummy variable for regular users 1 for regular users, 0 otherwise

university_educated dummy variable for university edu-
cated

1 for university educated, 0 otherwise

over_50 dummy variable for age over 50 years 1 for age over 50 years, 0 otherwise
attitude_quality Answer to “I am concerned about the

quality of drugs developed by unknown
companies"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_ingredients Answer to “I believe that ingredients are
the same no matter what the brand"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_patent Answer to “The original patent hold-
ers have valuable experience with their
medecines"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_dominance Answer to “I believe the dominance of
big pharmaceutical companies is un-
helpful"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)
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Figure 1: Structure of the hybrid choice model

Specifically, we have that the latent variable for individual n is given by:

αn = γLV,regular user · zn,regular user

+ γLV,univ. educ · zn,univ. educ

+ γLV,over 50 · zn,over 50

+ ηn, (1)

where zn,k is a dummy variable which is equal to 1 if characteristic k applies to individual n, γLV is
a vector of estimated parameters capturing the impact of these variables on αn and ηn is a random
disturbance which follows a standard Normal distribution across individuals, i.e. ηn ∼ N (0, 1).

The utility specification differs between the first two (branded) and last two (unbranded)
alternatives. In particular, for the branded alternatives, where j = 1, 2, we have that the utility
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(net of the extreme value term) in choice situation t for individual n is given by:

Vj,n,t = βn,Artemis ·
(
xbrandj,n,t

== Artemis
)

+ γArtemis,regular user · zn,regular user ·
(
xbrandj,n,t

== Artemis
)

+ γArtemis,univ. educ · zn,univ. educ ·
(
xbrandj,n,t

== Artemis
)

+ γArtemis,over 50 · zn,over 50 ·
(
xbrandj,n,t

== Artemis
)

+ βn,Novum ·
(
xbrandj,n,t

== Novum
)

+ γNovum,regular user · zn,regular user ·
(
xbrandj,n,t

== Novum
)

+ γNovum,univ. educ · zn,univ. educ ·
(
xbrandj,n,t

== Novum
)

+ γNovum,over 50 · zn,over 50 ·
(
xbrandj,n,t

== Novum
)

+ βSwitzerland ·
(
xbrandj,n,t

== Switzerland
)

+ βDenmark ·
(
xbrandj,n,t

== Denmark
)

+ βUSA ·
(
xbrandj,n,t

== USA
)

+ βstandard ·
(
xcharacteristicj,n,t

== standard
)

+ βfast acting ·
(
xcharacteristicj,n,t

== fast acting
)

+ βdouble strength ·
(
xcharacteristicj,n,t

== double strength
)

+ βside_effects · xside_effectsj,n,t

+ βprice · xpricej,n,t

+ λ · αn (2)

while for j = 3, 4, we have:

Vj,n,t = βBestValue ·
(
xbrandj,n,t

== BestValue
)

+ βSupermarket ·
(
xbrandj,n,t

== Supermarket
)

+ βPainAway ·
(
xbrandj,n,t

== PainAway
)

+ βUSA ·
(
xbrandj,n,t

== USA
)

+ βIndia ·
(
xbrandj,n,t

== India
)

+ βRussia ·
(
xbrandj,n,t

== Russia
)

+ βstandard ·
(
xcharacteristicj,n,t

== standard
)

+ βfast acting ·
(
xcharacteristicj,n,t

== fast acting
)

+ βside_effects · xside_effectsj,n,t

+ βprice · xpricej,n,t (3)

A number of differences arise between Equation 2 and 3. Some of these are a result of the
data, namely in that the possible brands and countries differ between the first two and last
two alternatives and the double strength characteristic is only possible for the first two brands.
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In addition, we allow for socio-demographic shifts only in the sensitivities to the two branded
products, and allow the utilities for Artemis and Novum to follow a Normal distribution across
individuals, with βn,Artemis ∼ N(µArtemis, σArtemis) and βn,Novum ∼ N(µNovum, σNovum). This
means that e.g. βn,Artemis = µArtemis + σArtemis · ξn,Artemis, where ξn,Artemis is a standard Normal
error term, distributed across individuals. In terms of normalisation, we use dummy coding,
setting βPainAway, βUSA and βstandard to zero. Finally, the impact of the latent variable αn is
solely on the first two utilities, i.e. the branded products.

For ease of notation, we group together the parameters into vectors, such that βn combines
the various β terms from Equations 2 and 3, where this is person specific due to the random
heterogeneity in βn,Artemis and βn,Novum. We also define γV to group together the deterministic
heterogeneity used in Equations 2 and 3. We thus get that the likelihood of the observed sequence
of Tn choices for person n, is given by:

LCn (βn, γV , αn) =

Tn∏
t=1

e
Vj∗n,t∑4

j=1 e
Vj,n,t

, (4)

where j∗n,t is the alternative chosen as the best one by respondent n in task t, and where this
probability is distributed across the random components in βn and αn.

The latent variable αn is also used to explain the value of the four attitudinal questions, where,
with the ordered logit model, we have that:

LIn,ordered (τ, ζ, αn) =

4∏
i=1

(
S∑
s=1

δ(In,i=s)

[
eτi,s−ζiαn

1 + eτi,s−ζiαn
− eτi,s−1−ζiαn

1 + eτi,s−1−ζiαn

])
, (5)

where ζi is an estimated parameter that measures the impact of αn on the attitudinal indicator
Ii, and τi,· is a vector of threshold parameters for this indicator. Again, τ and ζ are defined to
group together the various parameters used in the measurement model. Equation 5 is distributed
across the random component in αn.

The combined log-likelihood for the model is then given by:

LL (Ω) =
N∑
n=1

log

∫
βn

∫
αn

LCn (βn, γV , αn)LIn,ordered (τ, ζ, αn) f (αn) g (βn) dαndβn, (6)

where Ω combines all model parameters. This log-likelihood function requires integration over the
random component in the latent variable, and the random component in βn. In classical estimation
this integral is calculated using Monte Carlo methods, instead, when Bayesian methods are used,
the Metropolis-Hasting algorithm is employed.

4 Hybrid choice model example: classical estimation

In this section, we look at classical estimation of the hybrid choice model defined in Section 3.
The structure of an Apollo model file varies across specifications, but a general overview is shown
in Figure 2.
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Initialisation
• Clear memory (optional but recommended)
• Load Apollo library
• Set core controls

Data
• Load data into database object
• Optionally add any additional variables or apply transformations as required
• Optionally run pre-estimation analysis of the data

Model parameters
• Define model parameters 
• Optionally indicate any parameters that are to be kept fixed
• For continuous mixture models, define apollo_draws settings and create 

apollo_randCoeff function
• For latent class models, define apollo_lcPars function

Run apollo_validateInputs function

Model definition
• Define apollo_probabilities function

• Create likelihood functions for individual model components
• Combine into overall model likelihood if multiple components exist
• Depending on the model, average over draws, latent classes and take 

products across choices
• Return output with one likelihood value per individual in estimation

Estimation and model output
• Run apollo_estimate function
• Run apollo_modelOutput for on screen output
• Run apollo_saveOutput for on output to file

Run optional post estimation procedures

Figure 2: General structure of an Apollo model file
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4.1 Code initialisation

The first step in every use of Apollo is to initialise the code. These steps are illustrated in Figure
3. In an optional step, we clear the memory/workspace by using rm(list = ls()). Every time
users want to estimate a model, they should load Apollo into memory. This can be achieved by
simply running the following line of code in R, or by including it in the source file of each model,
prior to running any Apollo functions.

library(apollo)

This is followed by calling the apollo_initialise function, which ‘detaches’ variables4 and makes
sure that output is directed to the console rather than a file. This function is called without any
arguments and does not return any output variables, i.e.:

apollo_initialise()

The user next sets a number of core controls inside a list called apollo_control. In our case, we
set the name of the model in modelName (where any output files will use this name too), give a
brief description of the model in modelDescr (for use in the output) and provide in indivID the
name (in quotes) of the column in the data which contains the identifier variable for individual
decision makers. We also indicate that our model uses continuous random distributions by setting
mixing to TRUE, and enable multi-core estimation by setting the number of cores in nCores. Each
time, the entry on the left is an Apollo-defined variable whose name is not to be changed, and
the user provides the value on the right, followed by a comma, except for the last element.
rm( l i s t = l s ( ) )

l i b r a r y ( apo l l o )

a p o l l o_ i n i t i a l i s e ( )

apo l l o_contro l = l i s t (
modelName = "hybr id_model_class ica l " ,
modelDescr = "Hybrid cho i c e model on drug cho i c e data , c l a s s i c a l e s t imat ion " ,
indivID = "ID" ,
mixing = TRUE,
nCores = 25

)

Figure 3: Code initialisation

Only setting the individual ID is a requirement without which the code will not run. For any
other settings, the code will use default values when not provided by the user - details on these
optional settings are given in the online manual.

4.2 Reading and processing the data

Apollo makes use of a format where all relevant information for a given observation is stored
in the same row. Using a simple discrete choice context, this would imply that the data for
all alternatives is included in the same row, rather than one row per alternative. Some choice

4In R, a user can ‘attach’ an object, which means that individual components in it can be called by name.
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modellers refer to this as the wide format, as opposed to the long format, which would have one
row per alternative.

The next step is to load the data into an object called database, in our case from a csv file,
via the command:

database = read.csv("apollo_drugChoiceData.csv",header=TRUE)

Three additional points need to be mentioned here. Firstly, the code is not limited to using csv
files, and R allows the user to read in tab separated files too, for example (see R Core Team 2017
for more details). Secondly, some applications may combine data from multiple files. The user
can either combine the data outside of R or do so inside R using appropriate merging functions,
but at the point of validating the user inputs (Section 4.5), all data needs to be combined in a
single R data.frame called database. Thirdly, any new variables created by the user inside R need
to be created in the database object rather than the global environment, and this needs to happen
prior to validating the user inputs.

With labelled choice data (or even unlabelled data), it can be useful to analyse the choices
before model estimation to determine whether the characteristics of individuals choosing specific
alternatives differ across alternatives. This is made possible by apollo_choiceAnalysis, which
is called as follows:

apollo_choiceAnalysis(choiceAnalysis_settings,
apollo_control,
database)

where choiceAnalysis_settings has the following contents:

alternatives: A named vector containing the names of the alternatives and the corresponding
value for the choice variable.

avail: A list containing one element with availabilities per alternative.
choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation.

explanators: A dataframe containing a set of variables, one per column and one entry per
choice observation, that are to be used to analyse the choices.

We illustrate this process for our example in Figure 4. In most cases, this function would be
used for labelled data, where a given alternative refers to a specific product. In our dataset,
we have five different brands which are associated with different alternatives in different choice
tasks. Some transformations are needed before running our analysis. We first define these five
brands as being the pseudo-alternatives for our analysis of choices. We then create availabilities
for these alternatives, where the Artemis alternative is for example available if the brand in the
first or second alternative corresponds to Artemis (remembering that this brand is only possible
for the first two alternatives in the data). We then similarly create a pseudo choice variable,
where e.g. the new alternative 11, which corresponds to Artemis, is chosen if either the first or
second alternative in the data is given as the highest ranked (i.e. best) and if its brand is equal
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cho i c eAna ly s i s_se t t i ng s <− l i s t (
a l t e r n a t i v e s = c ( Artemis=11, Novum=12, BestValue=21, Supermarket=22, PainAway=23) ,
a v a i l = with ( database , l i s t (

Artemis=(brand_1=="Artemis ") | ( brand_2=="Artemis ") ,
Novum=(brand_1=="Novum") | ( brand_2=="Novum") ,
BestValue=(brand_3=="BestValue ") | ( brand_4=="BestValue ") ,
Supermarket=(brand_3=="Supermarket ") | ( brand_4=="Supermarket ") ,
PainAway=(brand_3=="PainAway") | ( brand_4=="PainAway") ) ) ,

choiceVar = with ( database ,
(11∗ ( ( best==1)∗( brand_1=="Artemis ")+(best==2)∗( brand_2=="Artemis ") )
+12∗(( best==1)∗( brand_1=="Novum")+(best==2)∗( brand_2=="Novum") )
+21∗(( best==3)∗( brand_3=="BestValue ")+(best==4)∗( brand_4=="BestValue ") )
+22∗(( best==3)∗( brand_3=="Supermarket ")+(best==4)∗( brand_4=="Supermarket ") )
+23∗(( best==3)∗( brand_3=="PainAway")+(best==4)∗( brand_4=="PainAway") ) ) ) ,

exp lanator s = database [ , c (" regu lar_user " ," univers i ty_educated " ," over_50 ") ]
)

apo l l o_cho i ceAna lys i s ( cho i c eAna ly s i s_se t t ing s , apo l lo_contro l , database )

Figure 4: Running apollo_choiceAnalysis (syntax and excerpt of output)

to Artemis. Finally, we define three explanatory variables for our analysis, which are the three
socio-demographic characteristics5.

The function produces a csv file with one row per alternative, and three columns per variable
included in explanators. In a given row, i.e. for a given alternative, these three columns contain
the mean value for the given explanatory variable for those choices where the alternative is chosen,
the mean value where it is not chosen (but available), and the test statistic for the two-sample t-
test comparing the means in these two groups (where the null hypothesis states that the difference
between the means is equal to 0, and the alternative hypothesis says that it is different from zero.).
The results of this process are shown in the bottom part of Figure 4 (for the first explanator only),
clearly highlighting differences across brands in terms of the share of choices made by regular users.
These value are also returned silently by the function, so they can be stored in a variable, by using
e.g. output=apollo_choiceAnalysis(choiceAnalysis_settings,apollo_control,database).

4.3 Model parameters

The user next needs to define the parameters and their starting values, and also indicate whether
any of the parameters are to be kept fixed at their starting values. This process is illustrated in
Figure 5. We first create an R object of the named vector type, called apollo_beta, with the
name and starting value for each parameter, including any that are later on fixed to their starting

5The syntax used in this function is standard R syntax, where the use of with allows us to omit database$
when referring to individual attributes.
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values. Typically users will use one line per parameter, we have placed two on each line simply
for formatting reasons. In our case, we then keep some of these parameters fixed to their starting
values by including their names in the character vector apollo_fixed, where this vector is kept
empty (apollo_fixed = c()) if all parameters are to be estimated.
apol lo_beta = c (mu_brand_Artemis = 0 , sig_brand_Artemis = 0 ,

gamma_Artemis_reg_user = 0 , gamma_Artemis_university = 0 ,
gamma_Artemis_age_50 = 0 , mu_brand_Novum = 0 ,
sig_brand_Novum = 0 , gamma_Novum_reg_user = 0 ,
gamma_Novum_university = 0 , gamma_Novum_age_50 = 0 ,
b_brand_BestValue = 0 , b_brand_Supermarket = 0 ,
b_brand_PainAway = 0 , b_country_CH = 0 ,
b_country_DK = 0 , b_country_USA = 0 ,
b_country_IND = 0 , b_country_RUS = 0 ,
b_country_BRA = 0 , b_char_standard = 0 ,
b_char_fast = 0 , b_char_double = 0 ,
b_risk = 0 , b_price = 0 ,
gamma_LV_reg_user = 0 , gamma_LV_university = 0 ,
gamma_LV_age_50 = 0 , lambda = 1 ,
zeta_qual i ty = 1 , ze ta_ingred i ent = 1 ,
zeta_patent = 1 , zeta_dominance = 1 ,
tau_quality_1 =−2, tau_quality_2 =−1,
tau_quality_3 = 1 , tau_quality_4 = 2 ,
tau_ingredients_1 =−2, tau_ingredients_2 =−1,
tau_ingredients_3 = 1 , tau_ingredients_4 = 2 ,
tau_patent_1 =−2, tau_patent_2 =−1,
tau_patent_3 = 1 , tau_patent_4 = 2 ,
tau_dominance_1 =−2, tau_dominance_2 =−1,
tau_dominance_3 = 1 , tau_dominance_4 = 2)

apo l l o_f ixed = c ("b_brand_PainAway" , "b_country_USA" , "b_char_standard ")

Figure 5: Setting names and starting values for model parameters, and fixing some parameters
to their starting values

4.4 Draws and random parameters

The next step concerns the generation of draws for random distributions. In our case, we need
to produce normally distributed inter-individual draws for βn,Artemis, βn,Novum and the random
component ηn in the latent variable αn. Draws are generated by Apollo whenever mixing==TRUE
in apollo_control, using the settings defined in a list called apollo_draws.

We first set the type of draws in interDrawsType, where different pre-defined types of draws
are available in Apollo, including (but not limited to) pmc for pseudo-Monte Carlo draws, halton
for Halton draws Halton (1960) and mlhs for MLHS draws (Hess et al., 2006). The number of
draws per individual is set in interNDraws for inter-individual draws. Finally, the user needs to
define the actual random disturbances or sets of draws, by giving each set of draws a name which
can be used later in the model specification, and by determining whether the draws are Normally
or Uniformly distributed, by including their names in interNormDraws or interUnifDraws, re-
spectively. These two distributions (standard Normal and Uniform between 0 and 1) can later be
transformed to any other distribution by the user inside apollo_randCoeff.

The process used for this is illustrated in the first part of Figure 6. In our example, we create
three sets of draws, each time with 500 draws per individual, where these are transformed into
standard Normal distributions. The settings that are not used in our example, namely any intra-
individual draws (cf. Section 6.3.1) and uniformly distributed inter-individual draws, are omitted
(or alternatively could be left empty, or set to zero).
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Some users may want additional flexibility to combine different types of draws or to generate
their own draws. This is possible in Apollo by giving the name of a user generated object with
uniformly distributed draws in apollo_draws$interDrawsType instead of providing one of the
specific types of draws listed above. Using the example from Figure 6, the user would need to
replace halton by for example ownInterDraws, where this is a list, with one element per random
set of draws. Each entry in the list needs to have a name, where this same set of names is then
used across interUnifDraws and interNormDraws to instruct the code to either leave the draws
untransformed or apply an inverse Normal CDF. The user also still needs to specify interNDraws.
apollo_draws = l i s t (

interDrawsType="halton " ,
interNDraws=500 ,
interNormDraws=c (" eta " ," xi_Artemis " ,"xi_Novum") )

apol lo_randCoef f=func t i on ( apollo_beta , apo l lo_inputs ) {
randcoe f f = l i s t ( )

r andcoe f f [ [ "LV" ] ] = gamma_LV_reg_user∗ regu lar_user + gamma_LV_university∗ univers i ty_educated +
↪→ gamma_LV_age_50∗over_50 + eta

randcoe f f [ [ " b_brand_Artemis " ] ] = mu_brand_Artemis + sig_brand_Artemis ∗ xi_Artemis +
↪→ gamma_Artemis_reg_user∗ regu lar_user + gamma_Artemis_university∗ univers i ty_educated +
↪→ gamma_Artemis_age_50∗over_50

randcoe f f [ [ " b_brand_Novum " ] ] = mu_brand_Novum + sig_brand_Novum ∗ xi_Novum + gamma_Novum_reg_user∗
↪→ regu lar_user + gamma_Novum_university∗ univers i ty_educated + gamma_Novum_age_50∗over_50

return ( randcoe f f )
}

Figure 6: Defining draws and random parameters

After defining the draws, the next step concerns the actual definition of those coefficients in the
model that follow a random distribution, in our case the latent variable and the two random brand
coefficients. For this, the user creates an additional function, namely apollo_randCoeff. Just as
with apollo_probabilities, which we will see below, this is a function that the user does not
call but which the user defines. This function takes apollo_beta and apollo_inputs as inputs
and generates a new list which contains the random coefficients, incorporating any deterministic
effects too. This is illustrated in the second part of Figure 6, where the correspondence with
e.g. Equation 1 for the LV component should be clear. The contents of apollo_randCoeff
will vary across model specifications, only the first line (randCoeff = list()) and final line
(return(randCoeff)) are to remain as in the example.

In the example used here, the three random coefficients all follow Normal distributions. If the
user for example wants to use a negative Lognormal distribution for β1, a symmetrical Triangular
distribution for β2 and a Johnson SB distribution for β3, then this could be specified as:

randcoeff[["beta1"]]= −exp(log_b1_mu + log_b1_sig ∗ draws1)

randcoeff[["beta2"]]= b2_a + b2_b ∗ (draws2a + draws2b)

randcoeff[["beta3"]]= b3_a + b3_b ∗ 1/(1 + exp(−(log_b3_mu + log_b3_sig ∗ draws3)))

where draws1 and draws3 need to be defined in interNormDraws and draws2a and draws2b in
interUnifDraws. The other terms are parameters to estimate, namely means (e.g. log_b1_mu),
standard deviations means (log_b1_sig), bounds (b2_a) and ranges (b2_b).
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4.5 Validation and preparing user inputs

The final step in preparing the code and data for model estimation or application is to call
apollo_validateInputs. The function runs a number of checks and produces a consolidated list
of model inputs. It is called as:

apollo_inputs=apollo_validateInputs()

This function takes no arguments but looks in the global environment for the various inputs
required for a model. The function also looks for a number of optional objects and sets default
values for any missing ones as illustrated in Figure 7.

Before returning the list of model inputs, apollo_validateInputs runs a number of validation
tests on the apollo_control settings and the database. It also sorts the data by ID and adds an
extra column called apollo_sequence which is a running index of observations for each individual
in the data. The list that is returned, apollo_inputs, contains the validated versions of the
various objects mentioned above, e.g. database.
> apollo_inputs = apollo_validateInputs()
Miss ing s e t t i n g f o r workInLogs , s e t to d e f au l t o f FALSE
Miss ing s e t t i n g f o r seed , s e t to d e f au l t o f 13
Miss ing s e t t i n g f o r HB, s e t to d e f au l t o f FALSE
Severa l obs e rva t i on s per i nd i v i dua l detected based on the value o f ID .

Se t t ing panelData s e t to TRUE.
Al l checks on apo l l o_cont ro l completed .
Al l checks on data completed .
Generating i n t e r draws . . . Done

Figure 7: Running apollo_validateInputs

4.6 Likelihood component: the apollo_probabilities function

The core part of the code is contained in the apollo_probabilities function, where we show this
function for our hybrid choice model in Figure 8. As with apollo_randCoeff, this is a function
defined by the user as it is specific to the model to be estimated. The function itself is never called
by the user, but is used for example by the function for model estimation apollo_estimate
discussed below. No limits on flexibility are imposed on the user with the Apollo package. A
number of prewritten functions for common models are made available in the package, going
beyond MNL, as discussed in Section 6.2. Additionally, the user can define his/her own models.
Finally, this part of the code can contain either a single model or multiple individual model
components, as shown in our example.

This function takes three inputs, namely the vector of parameters apollo_beta, the list of
combined model inputs apollo_inputs, and the argument functionality, which takes a default
value for model estimation, but other values apply for example in prediction, as discussed in
Section 4.9.2. The value used depends on which function makes the call to apollo_probabilities
and is controlled internally. The function returns probabilities, where the specific format depends
on functionality.

In the following three subsections, we look at the individual components of the code shown in
Figure 8.
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Like l ihood o f cho i c e s
V = l i s t ( )
V[ [ ' a l t1 ' ] ] = ( b_brand_Artemis ∗( brand_1=="Artemis ") + b_brand_Novum∗( brand_1=="Novum")

+ b_country_CH∗( country_1=="Switzer land ") + b_country_DK∗( country_1=="Denmark") +
↪→ b_country_USA∗( country_1=="USA")

+ b_char_standard ∗( char_1=="standard ") + b_char_fast ∗( char_1=="f a s t ac t ing ") +
↪→ b_char_double ∗( char_1=="double s t r ength ")

+ b_risk∗ s ide_e f f ec t s_1
+ b_price∗price_1
+ lambda∗LV )

. . .

V[ [ ' a l t4 ' ] ] = ( b_brand_BestValue ∗( brand_4=="BestValue ") + b_brand_Supermarket ∗( brand_4=="Supermarket
↪→ ") + b_brand_PainAway∗( brand_4=="PainAway")

+ b_country_USA∗( country_4=="USA") + b_country_IND∗( country_4=="India ") + b_country_RUS
↪→ ∗( country_4=="Russia ") + b_country_BRA∗( country_4=="Braz i l ")

+ b_char_standard ∗( char_4=="standard ") + b_char_fast ∗( char_4=="f a s t ac t ing ")
+ b_risk∗ s ide_e f f ec t s_4
+ b_price∗price_4 )

mnl_sett ings = l i s t (
a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
choiceVar = best ,
V = V

)

P [ [ " cho i c e " ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Like l ihood o f i n d i c a t o r s
o l_se t t i ng s1 = l i s t ( outcomeOrdered=att i tude_qua l i ty ,

V=zeta_qual i ty ∗LV,
tau=c ( tau_quality_1 , tau_quality_2 , tau_quality_3 , tau_quality_4 ) ,
rows=(task==1))

. . .

o l_se t t i ng s4 = l i s t ( outcomeOrdered=attitude_dominance ,
V=zeta_dominance∗LV,
tau=c ( tau_dominance_1 , tau_dominance_2 , tau_dominance_3 , tau_dominance_4 ) ,
rows=(task==1))

P [ [ " ind i c_qua l i ty " ] ] = apo l lo_ol ( o l_set t ings1 , f u n c t i o n a l i t y )
P [ [ " i nd i c_ ing r ed i en t s " ] ] = apo l lo_ol ( o l_set t ings2 , f u n c t i o n a l i t y )
P [ [ " indic_patent " ] ] = apo l lo_ol ( o l_set t ings3 , f u n c t i o n a l i t y )
P [ [ " indic_dominance " ] ] = apo l lo_ol ( o l_set t ings4 , f u n c t i o n a l i t y )

### Like l ihood o f the whole model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y )

P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )
P = apollo_avgInterDraws (P, apol lo_inputs , f u n c t i o n a l i t y )
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 8: The apollo_probabilities function for a hybrid choice model using classical estima-
tion (excerpt)

4.6.1 Initialisation

Any use of the apollo_probabilities function begins with a call to apollo_attach which
enables the user to then call individual elements within for example the database by name, e.g.
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using brand_1 instead of database$brand_1. This function is called as:

apollo_attach(apollo_beta,
apollo_inputs)

The function does not return an object as output and the user does not need to change the
arguments for this function. The call to this function is immediately followed by a command
instructing R to run the function apollo_detach once the code exits apollo_probabilities.
This ensures that this call is made even if there is an error that leads to a failure (and hence hard
exit) from apollo_probabilities. This call is made as:

on.exit(apollo_detach(apollo_beta,
apollo_inputs))

We next initialise a list (a flexible R object) called P which will contain the probabilities for the
model, where this is a requirement for any type of model used with the code.

4.6.2 Model definition

We create a list P which will in the end have five components, namely the probabilities from the
choice model and the probabilities of the four measurement models. Conditional on the random
parameters, the choice model component of the hybrid model is of the MNL type.

For a model with just a single component, the apollo_mnl function is called via:

P[["model"]] = apollo_mnl(mnl_settings,
functionality)

The function returns probabilities for the model, where depending on functionality, this is
for the chosen alternative only or for all alternatives. In our case, our model contains several
individual model components, and we thus use P[["choice"]] for this component instead of
P[["model"]]. The function takes as its core input a list called mnl_settings which has four
compulsory inputs and one optional input. We will now look at these in turn.

alternatives: A vector containing for each alternative its name and the value associated with
it in the dependent variable in the data.

avail: A list containing one element per alternative, using the same names as in alternatives,
with each entry being a vector of values of the same length as the number of observations (i.e.
a column from the data) or a scalar of 1 if an alternative is always available. A user can also
set avail=1 which implies full availability for all alternatives.

choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation.

V: A list containing one utility for each alternative, using the same names as in alternatives,
where any linear or non-linear specification is possible. The contents of V are complicated and
are thus generally defined prior to calling the function.
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rows: An optional vector of the same length as the number of rows in the data. This vector
needs to use logical statements to identify which rows in the data are to be used for this model.
For any observations in the data where the entry in rows is set to FALSE, the probability for
the model will be set to 1, i.e. they will not contribute to model estimation.

As seen in Figure 8, each alternative is given a name, and in the setting alternatives inside
mnl_settings, we associate each name with the corresponding value for the choice variable in
the data (going from 1 to 4). Our four alternatives always have full availability, and we use
the variable best for choiceVar. In the code example, we actually create the utilities V outside
mnl_settings first just for ease of coding, but they can similarly be created directly inside the
list. What matters is that they are then copied into a component called V inside mnl_settings.
We define the utilities in line with Equations 2 and 3, where we can directly incorporate the
random components LV, b_brand_Artemis and b_brand_Novum defined in apollo_randCoeff.
After creating the settings for the MNL component, we make the call to apollo_mnl to compute
the choice probabilities.

In the example shown here (and the rest of this manual), the user codes the utilities of all
alternatives one by one. With very large choice sets, this may not be practical, and a user may
create the utilities recursively, for example. We illustrate this in Figure 9 for a simple example,
where we have 100 alternatives, and where the utility includes two attributes (x1 and x2). Values
for these exist in the data for each alternative, with for example x1_1 being the value for the first
attribute for the first alternative, and there is also a vector of availabilities for each alternative,
e.g. av1 for the first alternative.

J = 100
V = l i s t ( )
f o r ( j in 1 : J ) V [ [ paste0 (" a l t " , j ) ] ] = b1∗database [ , paste0 ("x1_" , j ) ] + b2∗database [ , paste0 ("x2_" , j ) ]

mnl_sett ings = l i s t (
a l t e r n a t i v e s = setNames ( 1 : J , names (V) ) ,
a v a i l = setNames ( database [ , paste0 (" av " , 1 : J ) ] , names (V) ) ,
choiceVar = choice ,
V = V

)

Figure 9: Defining utilities for large choicesets
We next turn to the measurement model component of our hybrid model. We have four

indicators in our model, and use an ordered logit model for each. In Apollo, the apollo_ol
function for a model with just one component is called as follows:

P[["model"]] = apollo_ol(ol_settings,
functionality)

In our case, we have four indicators, so use for example P[["indic_quality"]]. The contents of
ol_settings are a little different from MNL. In particular, we have:

outcomeOrdered: A vector indicating the level selected for the ordinal variable in each obser-
vation. This will usually be a column (variable) inside database.

V: A numeric vector containing the explanatory variable used in the ordered logit model, i.e.
the utility.
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tau: A vector containing the names of the threshold parameters that are used in the model.
These should have one fewer element than the number of possible values for the dependent
variable, as extreme thresholds are assumed to be −∞ and +∞.

coding: An optional argument of numeric or character vector type which is only required as an
input if the dependent variable is in string format or does not use an incremental coding from 1
to a value equal to the number of possible values for the dependent variable outcomeOrdered.

rows: The optional rows argument already described for MNL.

In Figure 8, we first create the four lists of settings for each individual ordered logit model, before
making the four calls to apollo_ol. The utility is given by ζαn, and we estimate four thresholds
for each indicator. As the answers to each attitudinal question are given once per respondent
but are repeated in each line in the data for that respondent, we include rows=(task==1) which
ensures that the measurement model is only used once for each attitudinal statement and for each
individual, rather than contributing to the overall model likelihood in each row for that person.

The list P now contains five individual components, and the call to apollo_combineModels
combines these into a joint model. This is called as follows:

P = apollo_combineModels(P,

apollo_inputs,
functionality)

This function takes the list P which contains several individual model components and produces
a combined model, where, with Ln,m giving the likelihood of model component m for person n,
the overall likelihood for person n is given by Ln =

∏M
m=1 Ln,m (not showing here the presence

of any integration over random terms, which would be carried out outside the product). The
function apollo_combineModels creates the model object inside P as the product across individual
components - when working with multiple model components, the individual components should
thus not be called model themselves.

4.6.3 Function output

Three further final steps are required. We first call apollo_panelProd which multiplies the
probabilities across individual choice observations for the same individual, thus recognising the
repeated choice nature of our data, in our case the product across choice tasks in Equation 4
(noting that for the indicators, only the first row is used for each person). This function is only
to be used in the presence of multiple observations per individual, and is called as:

P = apollo_panelProd(P,

apollo_inputs,
functionality)
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We next need to average across the inter-individual draws. The function apollo_avgInterDraws
is called as:

P = apollo_avgInterDraws(P,

apollo_inputs,
functionality)

Independent of the model specification, the function apollo_probabilities always ends with
the same two commands. First is apollo_prepareProb which prepares the output of the function
depending on functionality, e.g. with different output for estimation and prediction6. This is
called as:

P = apollo_prepareProb(P,

apollo_inputs,
functionality)

This is followed by

return(P)

which ensures that P is returned as the output of apollo_probabilities.

4.7 Model estimation

4.7.1 Deciding on number of cores and draws

Apollo allows for multi-threaded estimation for classical estimation7, leading to significant esti-
mation speed improvements for some models (especially those using few iterations that each take
a long time). To help decide how many cores to use, we provide the function apollo_speedTest,
which calculates the loglikelihood function several times using different number of threads and
draws, and reports both the calculation time and the memory usage. This function is called as:

apollo_speedTest(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
speedTest_settings)

The final argument, speedTest_settings, is optional and allows the user to change the number
of draws and cores to try, as well as the number of times apollo_probabilities is calculated

6The user has the possibility of using weights by including the setting weights in apollo_control. Weights
are only used in estimation, and if the user wants to use weights, then in addition to including the setting in
apollo_control, the function apollo_weighting needs to be called prior to apollo_prepareProb. This is called
as P = apollo_weighting(P, apollo_inputs, functionality).

7When using Bayesian estimation, the reliance on RSGHB means only single core processing is possible.
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to ensure stable results. We illustrate the use of this function in Figure 10, which shows major
benefits by moving away from using a single core. We again create the list of settings prior to the
call to apollo_speedTest just for ease of coding. When running apollo_speedTest, progress and
results of the test are printed to the console. Each row displays the set-up, progress, and results of
a given configuration. The first column (nCores) indicates the number of computational threads
in use, i.e. how many processor cores are being used simultaneously by R. The second (inter) and
third (intra) columns indicate the number of inter-individual and intra-individual draws used. The
third column (progress) indicates the progress of the test for each set-up, each dot representing
10% of the repetitions requested. The fifth column (sec/LLCal) indicates the average time in
seconds required to complete one evaluation of the apollo_probabilities function. The sixth
and last column (RAM(MB)) presents a lower bound of the memory required to evaluate the
apollo_probabilities function. After completing the test, results are summarised in a table
indicating the time required to evaluate apollo_probabilities under each configuration, as well
as in a plot.

4.7.2 Actual model estimation

Now that we have defined our model, we can perform model estimation by calling the function
apollo_estimate and saving the output from it in an object called model. This function uses
the maxLik package (Henningsen and Toomet, 2011) for classical estimation, where Bayesian
estimation is discussed in Section 5. The function is called via:

model = apollo_estimate(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings)

where we have already covered the first four arguments. The final argument, estimate_settings,
is optional and default values will be used when it is not provided. As discussed in the online
manual, this allows the user to change the optimisation and Hessian routines, set the maximum
number of iterations, disable writing of intermediate results to file and control the level of detail
for on screen printing. The writing of iteration-level estimates into a file in the working directory
happens by default when using BFGS for estimation, and allows the user to monitor progress
during estimation, which is useful especially for complex models.

Users can also impose constraints in estimation and apply scaling to individual model pa-
rameters. This can help estimation if the scale of individual parameters at convergence is very
different. In classical estimation, the user can specify scales for individual model parameters
- they are scaled by Apollo prior to estimation and then returned to their original scale after
convergence. For Bayesian estimation, the scales are applied to the posterior parameter chains.
Figure 11 illustrates what happens when running apollo_estimate on our model, where only
part of the output is shown. After some initial checks (not shown here), Apollo splits the data
across the cores. This is followed by the main estimation process and finally the calculation of the
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> speedTest_settings=list(nDrawsTry = c(250, 500, 1000),nCoresTry = c(1,5,10,15,20),nRep = 10)

> apollo_speedTest(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, speedTest_settings)

___Draws___ sec /
nCores i n t e r i n t r a prog r e s s LLCall RAM(MB)

1 250 0 . . . . . . . . . . 0 .91 222 .6
5 250 0 . . . . . . . . . . 0 .38 447 .1

10 250 0 . . . . . . . . . . 0 .24 613 .6
15 250 0 . . . . . . . . . . 0 .21 778 .8
20 250 0 . . . . . . . . . . 0 .19 944 .6
1 500 0 . . . . . . . . . . 1 .89 279 .8
5 500 0 . . . . . . . . . . 0 .61 561 .8

10 500 0 . . . . . . . . . . 0 .35 727 .8
15 500 0 . . . . . . . . . . 0 .28 894 .1
20 500 0 . . . . . . . . . . 0 .26 1059.8
1 1000 0 . . . . . . . . . . 4 .11 394 .2
5 1000 0 . . . . . . . . . . 1 .05 790 .6

10 1000 0 . . . . . . . . . . 0 .64 956 .2
15 1000 0 . . . . . . . . . . 0 .46 1122.1
20 1000 0 . . . . . . . . . . 0 .42 1288.2

Summary o f r e s u l t s ( sec . per c a l l to LL func t i on )
draws250 draws500 draws1000

core s1 0 .9093 1.8869 4.1108
core s5 0 .3830 0.6115 1.0508
core s10 0.2370 0.3524 0.6428
core s15 0.2061 0.2836 0.4600
core s20 0.1938 0.2582 0.4180

Figure 10: Running apollo_speedTest

Hessian. Prior to that step, which can take a long time in complex models, the code also prints
out the final estimates8. We can see from Figure 11 that the estimation uses minimisation of the
negative of the log-likelihood, which is of course equivalent to maximisation of the log-likelihood
itself.

8At the time of writing, Apollo relies on numerical gradients and Hessians only.
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The outcomes of model estimation are saved in a list called model, which contains amongst
other things the estimates (model$estimates) and the classical and robust covariance matrices
(model$varcov and model$robvarcov).
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

. . .

Attempting to s p l i t data in to 25 p i e c e s .
Number o f obse rva t i on s per worker ( thread ) :
worker_1 worker_2 worker_3 worker_4 worker_5 worker_6 worker_7 worker_8 worker_9 worker_10

400 400 400 400 400 400 400 400 400 400
worker_11 worker_12 worker_13 worker_14 worker_15 worker_16 worker_17 worker_18 worker_19 worker_20

400 400 400 400 400 400 400 400 400 400
worker_21 worker_22 worker_23 worker_24 worker_25

400 400 400 400 400
169 .2MB of RAM in use be f o r e s p l i t t i n g .

S p l i t t i n g draws . . . . . . . . . . . . . . . . . . . . . . . . . Done . 283 .8MB of RAM in use .
S p l i t t i n g database . . . . . . . . . . . . . . . . . . . . . . . . . Done . 285 .3MB of RAM in use .
Creat ing workers and load ing l i b r a r i e s . . . Done . 1111.4MB of RAM in use .
Copying data to workers . . . Done . 1112.8MB of RAM in use (max was 1233.5MB)

Sta r t i ng main es t imat ion
I n i t i a l f unc t i on value : −19734.5
I n i t i a l g rad i ent value :

mu_brand_Artemis sig_brand_Artemis gamma_Artemis_reg_user gamma_Artemis_university
8.416564 e+02 −1.777880e−01 2.067306 e+02 2.926585 e+02

. . .
tau_dominance_4

4.056565 e+00
i n i t i a l va lue 19734.497781
i t e r 2 value 19647.274815
i t e r 3 value 18787.804991
. . .
i t e r 58 value 16537.665650
f i n a l value 16537.665650
converged

Estimated va lues :
[ , 1 ]

mu_brand_Artemis 1 .4613
sig_brand_Artemis 0 .0034
. . .
tau_dominance_4 2.1254

Computing covar iance matrix us ing numDeriv package .
( t h i s may take a whi le )

0% . . . . 2 5% . . . . 5 0% . . . . 7 5% . . . . 1 0 0%
Hess ian ca l cu l a t ed with numDeriv w i l l be used .
Ca l cu la t ing LL(0) . . . −20300.7
Updating inputs . . . Done .
Ca l cu la t ing LL o f each model component . . . Done .

Figure 11: Running apollo_estimate on hybrid choice model

4.8 Model outputs

Two separate functions are used for outputting results, namely apollo_modelOutput for output
to the screen, and apollo_saveOutput for output to files. These two commands do not return
an object as output, i.e. are called without an object to assign the output to. The functions are
called via:

apollo_modelOutput(model,

modelOutput_settings)
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and

apollo_saveOutput(model,

saveOutput_settings)

The two lists modelOutput_settings and saveOutput_settings are optional and give the user
the ability to control the level of detail produced in the output, for example enabling or disabling
the reporting of classical standard errors (in addition to robust ones), p-values, t-ratios against 1
(in addition to against 0) and covariance and correlation matrices. The user also has control over
what output files are produced when using apollo_saveOutput. An example of the on screen
output is shown in Figure 12. For apollo_saveOutput, a text file containing output using the
above settings will be produced, using a filename corresponding to apollo_control$modelName.
This is in addition to files contains estimates, covariance and correlation matrices, unless instructed
not to do so. The default settings imply a more verbose output for the log file as opposed to the
on screen output.

4.9 Processing of results

We now look at some of the additional functions that are provided in Apollo to allow the user to
analyse model results after estimation.

4.9.1 Delta method

A key use of estimates from choice models is the calculation of functions of these estimates, for
example in the form of ratios of coefficients, leading to marginal rates of substitution, and in the
case of a cost coefficient being used as the denominator, willingness-to-pay (WTP) measures. It
is then important to be able to calculate standard errors for these derived measures, where this
can be done sraightforwardly and accurately with the Delta method, as discussed by Daly et al.
(2012a). The function apollo_deltaMethod is implemented for this purpose for a limited number
of operations, and is called as follows:

apollo_deltaMethod(model,

deltaMethod_settings)

The list deltaMethod_settings has the following components:

operation: A character object operation, which determines which function is to be applied
to the parameters. Possible values are sum, diff and ratio for the sum, difference and ratio
of two parameters; exp for the exponential of a single parameter; logistic for a logistic
transform with either one or two parameters, and lognormal for the mean and standard
deviation for a Lognormal distribution on the basis of the mean and standard deviation for
the logarithm of the coefficient.

parName1: A character object giving the name of the first parameter.
parName2: Like parName1, but for the second parameter.
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apollo_modelOutput(model)
Model run us ing Apol lo f o r R, ve r s i on 0 . 0 . 8
www. Apol loChoiceModel l ing . com

Model name : hybr id_model_class ica l
Model d e s c r i p t i o n : Hybrid cho i c e model on drug cho i c e data , c l a s s i c a l e s t imat ion
Model run at : 2019−04−15 08 : 58 : 54
Estimation method : b fgs
Model d i a gno s i s : s u c c e s s f u l convergence
Number o f i n d i v i du a l s : 1000
Number o f obse rva t i on s : 10000

Number o f in t e r−person draws : 500 ( halton )
Number o f co r e s used : 25

LL( s t a r t ) : −19734.5
LL(0) : −20300.7
LL( f i n a l , whole model ) : −16537.67

LL( cho i c e ) : −10879.29
LL( ind i c_qua l i ty ) : −1453.893
LL( ind i c_ ing r ed i en t s ) : −1486.283
LL( indic_patent ) : −1485.031
LL( indic_dominance ) : −1425.619

Rho−square (0) : 0 .1854
Adj .Rho−square (0) : 0 .1831
AIC : 33165.33
BIC : 33489.8
Estimated parameters : 45
Time taken (hh :mm: s s ) : 0 1 : 0 4 : 1 4 . 0 5
I t e r a t i o n s : 60

Estimates :
Estimate Std . e r r . t . r a t i o (0 ) Rob . std . e r r . Rob . t . r a t i o (0 )

mu_brand_Artemis 1 .4613 0.0834 17 .53 0.0815 17 .92
sig_brand_Artemis 0 .0034 0.2629 0 .01 0 .0395 0 .09
gamma_Artemis_reg_user −0.0849 0.0825 −1.03 0 .0845 −1.00
gamma_Artemis_university −0.0769 0.0744 −1.03 0 .0737 −1.04
gamma_Artemis_age_50 0.0882 0.0740 1 .19 0 .0743 1 .19
mu_brand_Novum 1.1628 0.0851 13 .67 0 .0834 13 .94
sig_brand_Novum 0.2939 0.0659 4 .46 0.0643 4 .57
gamma_Novum_reg_user 0 .0409 0.0862 0 .47 0.0883 0 .46
gamma_Novum_university −0.0989 0.0779 −1.27 0 .0795 −1.24
gamma_Novum_age_50 0.0369 0.0776 0 .47 0 .0784 0 .47
b_brand_BestValue 0 .6724 0.0550 12 .22 0 .0549 12 .26
b_brand_Supermarket 0 .9856 0.0552 17 .85 0.0539 18 .27
b_brand_PainAway 0.0000 NA NA NA NA
b_country_CH 0.6742 0.0401 16 .83 0 .0391 17 .25
b_country_DK 0.3392 0.0385 8 .82 0.0377 8 .99
b_country_USA 0.0000 NA NA NA NA
b_country_IND −0.2970 0.0574 −5.17 0 .0581 −5.11
b_country_RUS −0.8934 0.0618 −14.46 0 .0612 −14.60
b_country_BRA −0.6589 0.0603 −10.93 0 .0619 −10.64
b_char_standard 0.0000 NA NA NA NA
b_char_fast 0 .7720 0.0293 26 .32 0 .0291 26 .56
b_char_double 1 .2187 0.0381 31 .95 0 .0369 33 .02
b_risk −0.0016 0.0001 −26.99 0 .0001 −26.47
b_price −0.7280 0.0183 −39.83 0 .0174 −41.89
gamma_LV_reg_user −0.9522 0.1049 −9.08 0 .1066 −8.93
gamma_LV_university −0.5461 0.0961 −5.68 0 .0966 −5.65
gamma_LV_age_50 0.4344 0.0952 4 .56 0 .0972 4 .47
lambda 0.6187 0.0361 17 .14 0 .0357 17 .32
zeta_qual i ty 0 .9566 0.0875 10 .93 0 .0889 10 .77
zeta_ingred i ent −0.8720 0.0819 −10.65 0 .0832 −10.48
zeta_patent 1 .0775 0.0938 11 .48 0.0940 11 .46
zeta_dominance −0.6782 0.0723 −9.38 0 .0709 −9.57
tau_quality_1 −1.9310 0.1251 −15.43 0 .1287 −15.01
tau_quality_2 −1.0241 0.1083 −9.46 0 .1088 −9.41
tau_quality_3 1.1215 0.1061 10 .57 0 .1064 10 .54
tau_quality_4 2.2524 0.1335 16 .88 0 .1329 16 .95
tau_ingredients_1 −2.0797 0.1234 −16.85 0 .1237 −16.81
tau_ingredients_2 −0.9898 0.0997 −9.92 0 .1008 −9.82
tau_ingredients_3 0.9205 0.1022 9 .01 0 .1038 8 .87
tau_ingredients_4 1.8713 0.1195 15 .66 0 .1201 15 .59
tau_patent_1 −2.1004 0.1386 −15.15 0 .1366 −15.38
tau_patent_2 −1.0301 0.1168 −8.82 0 .1171 −8.79
tau_patent_3 0.9398 0.1104 8 .51 0 .1123 8 .37
tau_patent_4 1.8827 0.1274 14 .78 0 .1296 14 .53
tau_dominance_1 −2.2097 0.1209 −18.28 0 .1204 −18.35
tau_dominance_2 −1.1089 0.0922 −12.03 0 .0932 −11.89
tau_dominance_3 1.0678 0.0942 11 .34 0 .0928 11 .51
tau_dominance_4 2.1254 0.1158 18 .36 0 .1143 18 .59

Figure 12: On screen output (partial) obtained using apollo_modelOutput
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multPar1: An optional numerical value used to multiply the first parameter, set to 1 if omitted.
multPar2: Like multPar1, but for the second parameter.

An example application of this function is illustrated in Figure 13, where we calculate the WTP
for a reduction in the risk of side effects, and also look at the significance of the difference between
the means for the two branded products. For the first calculation (i.e. the WTP), we also apply a
multiplication by 1, 000 to the numerator, thus looking at the WTP for a change by one percentage
point.
> deltaMethod_settings=list(operation="ratio", parName1="b_risk", parName2="b_price", multPar1 = 1000)
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t−r a t i o (0 )

Ratio o f b_risk ( mu l t i p l i ed by 1000) and b_price : 2 .1647 0 .091 23 .79

> deltaMethod_settings=list(operation="diff", parName1="mu_brand_Artemis", parName2="mu_brand_Novum")
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t−r a t i o (0 )

D i f f e r en c e between mu_brand_Artemis and mu_brand_Novum: 0.2985 0.0513 5 .82

Figure 13: Running apollo_deltaMethod

Only a limited number of functions of parameters are covered by apollo_deltaMethod. Rather
than relying on sampling based approaches such as the Krinsky & Robb method (Krinsky and
Robb, 1986) for calculating the standard errors for more complex functions, users who wish to
compute standard errors of other functions can for example use the R function deltamethod
from the alr3 package (Weisberg, 2005). This uses symbolic differentiation of the user provided
function.

4.9.2 Model predictions

A core capability of Apollo is that it covers model application (i.e. prediction) in addition to
estimation. This is implemented in the function apollo_prediction. The function is called as
follows:

forecast = apollo_prediction(model,

apollo_probabilities,
apollo_inputs,
modelComponent)

The majority of these arguments have been discussed already. The only additional new argument
is modelComponent, where this is the name of the model component for which predictions are
requested. This argument is required for models with multiple components, and needs to be the
name (string) of one of the elements in the list P used inside apollo_probabilities.

The application of this function is illustrated in Figure 14, where we look at what happens
to the mean market share for the two branded products after a 50% increase in their cost. Of
course, it is overly simplistic to make predictions on SC data alone, and the manual discusses in
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detail the steps for rescaling to RP elasticities. Model predictions in Apollo always use database
as an input, whether applying the model to the base data or a forecast scenario. This means that
for looking at the impact of changes to explanatory variables, these changes need to be made in
database, and can then of course be reversed after applying apollo_prediction.
> base_forecast <- apollo_prediction(model, apollo_probabilities, apollo_inputs, modelComponent="choice")
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .
> mean(base_forecast[,1]+base_forecast[,2])
[ 1 ] 0 .694406
> database$price_1=1.5*database$price_1
> database$price_2=1.5*database$price_2

> change_forecast <- apollo_prediction(model, apollo_probabilities, apollo_inputs, modelComponent="choice")
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .

> mean(change_forecast[,1]+change_forecast[,2])
[ 1 ] 0 .4959083
> database$price_1=1/1.5*database$price_1
> database$price_2=1/1.5*database$price_2

Figure 14: Running apollo_prediction

Model predictions are also implemented for MDCEV and MDCNEV, where instead of probabili-
ties, the predictions will instead return expected values of consumption for each alternative at the
observation level. Predictions are not implemented for exploded logit and Normal density models.

4.9.3 Summary of random heterogeneity

After model estimation, it may be useful to an analyst to have at their disposal the actual values
used for random coefficients, especially if these included interactions with socio-demographics or
(non-linear) transforms that may lead to a requirement for simulation to calculate moments (as
in the semi-non-parametric approach of Fosgerau and Mabit 2013).

For continuous random coefficients, the function apollo_unconditionals is called as follows:

unconditionals = apollo_unconditionals(model,

apollo_probabilities,
apollo_inputs)

The function produces a list as output, with one element per random coefficient, where this is a
matrix for coefficients using inter-individual draws (one row per individual, one column per draw),
and a 3-dimensional array (i.e. a cube) for coefficients using inter and intra-individual draws (with
one row per observation, and draws in the second and third dimensions). The outputs from this
function can then readily be used for summary statistics or to produce plots.

4.9.4 Posterior distributions

There is also extensive interest by choice modellers in posterior model parameter distributions, as
discussed in Train (2009, chapter 11) for continuous mixture models and Hess (2014) for latent
class. We implement functions for this for both continuous mixed logit and latent class models.
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The calculation of posteriors for models with continuous random heterogeneity is implemented
in the function apollo_conditionals, which is called as follows:

conditionals = apollo_conditionals(model,

apollo_probabilities,
apollo_inputs)

The function produces a list object with one component per continuous random coefficient (el-
ement defined in apollo_randCoeff). Each of these components is a matrix with one row per
individual, containing the ID for that individual, the mean of the posterior distribution for that
individual for the coefficient in question, and the standard deviation. As apollo_conditionals
uses the contents of apollo_randCoeff, any socio-demographic interactions included there will
also be included in the calculation for the conditionals.

Figure 15 illustrates the calculation of unconditionals and conditionals for the latent variable
in our example. We also show how the results can be contrasted for different subgroups of the
data. To do this, we make use of the function apollo_firstRow, which produces a subset of
the input data it receives, only retaining the first row for each individual9. This is required here
as the data has one row per observation, but the conditionals and unconditionals only have one
row per person. It is then also possible to use the conditional means for example in regression
analysis against characteristics of the individual, as discussed by Train (2009, chapter 11), and as
illustrated in the online manual.

5 Extension to Bayesian estimation

Apollo allows the user to replace classical estimation by Bayesian estimation, for all models. We
do not provide details here on Bayesian theory but instead refer the reader to Lenk (2014) and
the references therein. Bayesian estimation in Apollo makes use of the RSGHB package, and the
user is referred to the documentation in Dumont and Keller (2019) for RSGHB-specific settings.

The key advantage for the user is that Apollo provides a wrapper around RSGHB so that the
syntax in apollo_probabilities does not change when a user moves from classical to Bayesian
estimation. To explain the process, we now look at Bayesian estimation of the same model
implemented in Section 4. We only discuss those steps where the code differs from the classical
estimation case.

The first steps in the model definition are shown in Figure 16. We first set apollo_control$HB
= TRUE and we now also omit the setting apollo_control$mixing = TRUE as this relates to classi-
cal estimation. We then define the individual coefficients and their starting values in apollo_beta
as before, with the key difference that for any random coefficients, we now define a single param-
eter, not a mean and a standard deviation. The definition of apollo_fixed is the same as before.

We next create a list called apollo_HB which can contain any of the settings used in RSGHB
(Dumont and Keller, 2019), where we only use a small subset here. One further difference arises.

9In particular, by calling x = apollo_firstrow(x, apollo_inputs), we replace x by a version where only the
first entry for each individual is retained. The object x can be a vector, matrix or 3-dimensional array.
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> unconditionals <- apollo_unconditionals(model,apollo_probabilities,apollo_inputs)
Updating inputs . . . Done .
Uncondit iona l d i s t r i b u t i o n s computed

> conditionals <- apollo_conditionals(model,apollo_probabilities,apollo_inputs)
Updating inputs . . . Done .
For in format ion :
This func t i on i s meant f o r use only with cont inuous mixture models , i . e . no l a t en t c l a s s .

Ca l cu la t ing c ond i t i o n a l s . . . Done .

> mean(unconditionals[["LV"]])
[ 1 ] −0.3842727
> sd(unconditionals[["LV"]])
[ 1 ] 1 .151479

> summary(conditionals[["LV"]])
ID post . mean post . sd

Min . : 1 .0 Min . :−3.5027 Min . : 0 . 5 606
1 s t Qu . : 250 .8 1 s t Qu. :−1.0512 1 s t Qu. : 0 . 6 0 1 4
Median : 500 .5 Median :−0.3214 Median : 0 . 6 164
Mean : 500 .5 Mean :−0.3848 Mean : 0 . 6 206
3 rd Qu . : 750 .2 3 rd Qu . : 0 .3137 3 rd Qu. : 0 . 6 3 5 4
Max. : 1 000 . 0 Max. : 2 .1166 Max. : 0 . 8 103

> regular_user_n=apollo_firstRow(database$regular_user, apollo_inputs)

> mean(subset(unconditionals[["LV"]],regular_user_n==0))
[ 1 ] −0.04717565
> mean(subset(unconditionals[["LV"]],regular_user_n==1))
[ 1 ] −0.9994272
> summary(subset(conditionals[["LV"]],regular_user_n==0))

ID post . mean post . sd
Min . : 2 . 0 Min . :−2.26740 Min . : 0 . 5 630
1 s t Qu. : 2 4 6 . 2 1 s t Qu. :−0.57602 1 s t Qu. : 0 . 6 0 4 1
Median : 4 9 9 . 5 Median :−0.01971 Median : 0 . 6195
Mean : 5 00 . 9 Mean :−0.04802 Mean : 0 . 6 229
3 rd Qu. : 7 5 5 . 5 3 rd Qu . : 0 .50459 3 rd Qu. : 0 . 6 3 9 2
Max. : 9 9 9 . 0 Max . : 2 .11656 Max. : 0 . 7 213

> summary(subset(conditionals[["LV"]],regular_user_n==1))
ID post . mean post . sd

Min . : 1 .0 Min . :−3.5027 Min . : 0 . 5 606
1 s t Qu . : 258 .2 1 s t Qu. :−1.6053 1 s t Qu. : 0 . 5 9 8 2
Median : 501 .0 Median :−0.9868 Median : 0 . 6 126
Mean : 499 .8 Mean :−0.9993 Mean : 0 . 6 164
3 rd Qu . : 747 .5 3 rd Qu. :−0.3826 3 rd Qu. : 0 . 6 3 0 6
Max. : 1 000 . 0 Max. : 1 .5828 Max. : 0 . 8 103

Figure 15: Running apollo_unconditionals and apollo_conditionals

RSGHB requires the user to create an element called gdist with a numeric coding for distributions.
Apollo instead requires the user to create a named character vector inside apollo_HB that is
called hbDist and which contains one entry for each of the parameters in apollo_beta, setting
the distribution to use, with the following definitions:

"F": non-random (fixed) parameters10;
"N": normally distributed random parameters;
"LN-": negative lognormally distributed random parameters;
"LN+": positive lognormally distributed random parameters;
"CN-": normally distributed random parameters, bounded above at 0;
"CN+": normally distributed random parameters, bounded below at 0; and
"JSB": Johnson SB distributed random parameters.
10This is also the obvious choice for parameters that are to be kept fixed at their starting values.
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apo l l o_contro l = l i s t (
modelName = "hybrid_model_bayesian " ,
modelDescr = "Hybrid cho i c e model on drug cho i c e data , bayes ian es t imat ion " ,
indivID = "ID" ,
HB = TRUE

)

apol lo_beta = c ( b_brand_Artemis = 0 , gamma_Artemis_reg_user = 0 ,
gamma_Artemis_university = 0 , gamma_Artemis_age_50 = 0 ,
b_brand_Novum = 0 , gamma_Novum_reg_user = 0 ,
gamma_Novum_university = 0 , gamma_Novum_age_50 = 0 ,
b_brand_BestValue = 0 , b_brand_Supermarket = 0 ,
b_brand_PainAway = 0 , b_country_CH = 0 ,
b_country_DK = 0 , b_country_USA = 0 ,
b_country_IND = 0 , b_country_RUS = 0 ,
b_country_BRA = 0 , b_char_standard = 0 ,
b_char_fast = 0 , b_char_double = 0 ,
b_risk = 0 , b_price = 0 ,
gamma_LV_reg_user = 0 , gamma_LV_university = 0 ,
gamma_LV_age_50 = 0 , lambda = 1 ,
zeta_qual i ty = 1 , ze ta_ingred i ent = 1 ,
zeta_patent = 1 , zeta_dominance = 1 ,
tau_quality_1 =−2, tau_quality_2 =−1,
tau_quality_3 = 1 , tau_quality_4 = 2 ,
tau_ingredients_1 =−2, tau_ingredients_2 =−1,
tau_ingredients_3 = 1 , tau_ingredients_4 = 2 ,
tau_patent_1 =−2, tau_patent_2 =−1,
tau_patent_3 = 1 , tau_patent_4 = 2 ,
tau_dominance_1 =−2, tau_dominance_2 =−1,
tau_dominance_3 = 1 , tau_dominance_4 = 2 ,
eta = 0)

apo l l o_f ixed = c ("b_brand_PainAway" , "b_country_USA" , "b_char_standard ")

apollo_HB = l i s t (
hbDist = c ( b_brand_Artemis ="N" , gamma_Artemis_reg_user ="F" ,

gamma_Artemis_university ="F" , gamma_Artemis_age_50 ="F" ,
b_brand_Novum ="N" , gamma_Novum_reg_user ="F" ,
gamma_Novum_university ="F" , gamma_Novum_age_50 ="F" ,
b_brand_BestValue ="F" , b_brand_Supermarket ="F" ,
b_brand_PainAway ="F" , b_country_CH ="F" ,
b_country_DK ="F" , b_country_USA ="F" ,
b_country_IND ="F" , b_country_RUS ="F" ,
b_country_BRA ="F" , b_char_standard ="F" ,
b_char_fast ="F" , b_char_double ="F" ,
b_risk ="F" , b_price ="F" ,
gamma_LV_reg_user ="F" , gamma_LV_university ="F" ,
gamma_LV_age_50 ="F" , lambda ="F" ,
zeta_qual i ty ="F" , ze ta_ingred i ent ="F" ,
zeta_patent ="F" , zeta_dominance ="F" ,
tau_quality_1 ="F" , tau_quality_2 ="F" ,
tau_quality_3 ="F" , tau_quality_4 ="F" ,
tau_ingredients_1 ="F" , tau_ingredients_2 ="F" ,
tau_ingredients_3 ="F" , tau_ingredients_4 ="F" ,
tau_patent_1 ="F" , tau_patent_2 ="F" ,
tau_patent_3 ="F" , tau_patent_4 ="F" ,
tau_dominance_1 ="F" , tau_dominance_2 ="F" ,
tau_dominance_3 ="F" , tau_dominance_4 ="F" ,
eta ="N") ,

gNCREP = 1000 ,
gNEREP = 1000 ,
gINFOSKIP = 500 ,
f ixedA = c (NA,NA, 0 ) ,
f ixedD = c (NA,NA, 1 ) ,
gFULLCV = FALSE
)

Figure 16: Bayesian estimation in Apollo: model settings

The entry hbDist is the only compulsory setting when using Bayesian estimation in Apollo. In
our example, we also define six additional settings, namely:

gNCREP: number of burn-in iterations to use prior to convergence (default=100000);
gNEREP: number of iterations to keep for averaging after convergence (default=100000);
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gINFOSKIP: number of iterations between printing/plotting information (default=250);
fixedA: a vector of the same length as the number of random parameters, containing the value
that the mean of each parameter should be kept fixed to, with NA for freely estimated random
parameters (all NA by default);

fixedD: a vector of the same length as the number of random parameters, containing the value
that the variance of each parameter should be kept fixed to, with NA for freely estimated
random parameters (all NA by default); and

gFULLCV: a boolean variable indicating whether the full covariance matrix should be estimated
between all random terms (default=TRUE).

In our example, we use these final three settings to constrain the mean and standard deviation of
η, the random component in the latent variable, to be 0 and 1, respectively.

In Bayesian estimation, we no longer use Apollo to generate draws, and apollo_draws and
apollo_randCoeff are thus not used. The apollo_probabilities function for a model estimated
using Bayesian techniques uses the same approach as for a model without random heterogeneity,
where RSGHB produces individual-specific values to be used for each parameter at each iteration.

Figure 17 shows the apollo_probabilities function for our example, where we only show
those parts that have changes. As we no longer create random coefficients using apollo_randCoeff,
we now compute the values for the two first brand parameters and the latent variable inside
apollo_probabilities, where the random variation in these is introduced by RSGHB. The calcu-
lation of probabilities remains exactly the same as before. When using Bayesian estimation, the
use of apollo_avgInterDraws and apollo_avgIntraDraws does not apply even in the presence
of random coefficients. In addition, the call to apollo_panelProd is ignored as RSGHB automat-
ically groups together observations for the same individual. The inclusion of any of these three
commands however does no harm.

The call to apollo_estimate is made in exactly the same way as with classical estimation. In
our example, we use scaling for those parameters that we saw obtain very small values in classical
estimation. The estimation process is illustrated in Figure 18 for the text output and Figure 19
for a graphical output of the chains. In the text output, we show the first and final iteration,
where this also highlights the way in which RSGHB confirms the distributions used at the outset.

The post-estimation output from a model using Bayesian estimation is substantially different
from that with classical estimation, and is summarised in Figure 20. The early information on
model name, description, and so forth is the same as with classical estimation. This is followed by
average model fit statistics across the post burn-in iterations. Next, we have convergence reports
for the parameter chains, where these use the Geweke test (Geweke, 1992). The next four parts of
the output look at summaries of the parameter chains, each time giving the mean and standard
deviation across the post burn-in iterations for each parameter, where these results are divided
into the non-random coefficients, the means for the underlying Normals, and the covariance matrix
(split across two tables, with the mean and standard deviations of each entry in the covariance
matrix). Finally, the output reports the means and standard deviations for the posteriors, where
these are for the actual coefficients, i.e. taking into account the distributions used, rather than
looking at the underlying Normals. All the values used for these components are also available in
the model object after estimation and can be used for plotting. The use of apollo_saveOutput
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### crea t e random components
LV = gamma_LV_reg_user∗ regu lar_user + gamma_LV_university∗ univers i ty_educated + gamma_LV_age_50∗

↪→ over_50 + eta
b_brand_Artemis = b_brand_Artemis + gamma_Artemis_reg_user∗ regu lar_user + gamma_Artemis_university∗

↪→ univers i ty_educated + gamma_Artemis_age_50∗over_50
b_brand_Novum = b_brand_Novum + gamma_Novum_reg_user∗ regu lar_user + gamma_Novum_university∗

↪→ univers i ty_educated + gamma_Novum_age_50∗over_50

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

. . .

### Like l ihood o f the whole model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 17: The apollo_probabilities function for a hybrid choice model using bayesian esti-
mation

operates as before, but if saveEst==TRUE, the code additionally saves the output files produced
by RSGHB, which can be very large in size (cf. Dumont and Keller, 2019). As highlighted in Figure
20, when using scaling in Bayesian estimation in Apollo, not all estimates are returned to their
original scale after estimation. Indeed, the scaling is applied to the parameter chains directly, and
producing scaled values for the underlying Normals is thus not convenient. We thus report the
scaled outputs only for the fixed parameters, the random parameters after transformation to the
actual distributions used, and the posterior means.

In classical estimation, Apollo creates an object estimates in the model list created after esti-
mation, containing the final parameter values. When using Bayesian estimation, model$estimates
is also produced, combining non-random parameters with individual specific posteriors for random
parameters. This allows the user to use apollo_prediction and apollo_llCalc on such outputs,
where care is of course required in interpretation of outputs based on posterior means. As shown
in Figure 21, the outcomes in prediction are in line with what we saw in classical estimation in
Figure 14.

6 Additional functionalities

Apollo provides many additional functionalities beyond those covered in this paper. A full
overview is provided in the online manual and only some brief highlights are presented here.
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e s t imate_se t t ing s=l i s t ( s c a l i n g=c ( gamma_Artemis_reg_user = 0 .1 ,
gamma_Artemis_university = 0 .1 ,
gamma_Artemis_age_50 = 0 .1 ,
gamma_Novum_reg_user = 0 .1 ,
gamma_Novum_university = 0 .1 ,
gamma_Novum_age_50 = 0 .1 ,
b_risk = 0 . 1 ) )

> model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, estimate_settings)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Number o f I nd i v i dua l s : 1000
Number o f Observat ions : 10000

Pr io r var iance : 2
Target Acceptance ( Fixed ) : 0 .3

Target Acceptance (Normal ) : 0 .3
Degrees o f Freedom : 5

Avg . Number o f Observat ions per Ind iv idua l : 10
I n i t i a l Log−Like l ihood : −19973.99029

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fixed Parameters Star t
gamma_Artemis_reg_user 0

gamma_Artemis_university 0
. . .

tau_dominance_4 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Random Parameters Star t Dist .
b_brand_Artemis 0 N

b_brand_Novum 0 N
eta 0 N

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I t e r a t i o n : 250000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

RHO ( Fixed ) : 4 .007008066 e−05
Acceptance Rate ( Fixed ) : 2 .76

RHO (Normal ) : 1 .186027669
Acceptance Rate (Normal ) : 0 .296

Parameter RMS: 1.284610686
Avg . Variance : 1 .016972827

Log−Like l ihood : −15994.70055
RLH: 0.2097300907

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

Random Parameters Estimate
b_brand_Artemis : 1 .477496

b_brand_Novum : 1.244831
eta : 0 .000000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Time per i t e r a t i o n : 0 .0525 s e c s
Time to complet ion : 0 mins
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Estimation complete .

Figure 18: Bayesian estimation in Apollo: estimation process

6.1 Additional pre-estimation tools

Three additional functions provide some flexibility to a user before starting model estimation.
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Figure 19: Bayesian estimation in Apollo: estimation process (parameter chains)

apollo_readBeta allows a user to read in estimates from a previous model to use as starting
values.

apollo_searchStart implements a simplified version of the algorithm proposed by Bierlaire
et al. (2010) to find better starting values for a model with the hope of reducing the risk of
convergence to a poor local optimum.

apollo_llCalc allows the user to calculate the log-likelihood of the model (and subcompo-
nents) for given parameter values, before or after estimation.

6.2 Additional model structures

Apollo provides ready made functions for many other model components beyond the MNL and
ordered logit models discussed in this paper. While additional models will be added over time, at
the time of writing this paper, Apollo version 0.0.8 included functions for seven additional model
structures, as follows:

apollo_cnl provides an implementation of the cross-nested logit (CNL) model (Vovsha, 1997),
where we follow the “Generalised Nested Logit" (GNL) model of Wen and Koppelman (2001),
with all nesting parameters freely estimated, and the constraint on the allocation parameters
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> apollo_modelOutput(model)

Model run us ing Apol lo f o r R, ve r s i on 0 . 0 . 8
www. apo l l o cho i c emode l l i ng . com

LL( s t a r t ) : −19973.99
LL(0) : −20300.7
Average post . LL post burn−in : −15965.7
Average post . RLH post burn−in : 0 .2101

Chain convergence repor t

Fixed ( non random) parameters
gamma_Artemis_reg_user gamma_Artemis_university

−0.2443 5.8471
. . .

tau_dominance_4
6.1194

Random parameters
b_brand_Artemis b_brand_Novum eta

−5.6693 −8.5749 NaN

Covariances o f random parameters
b_brand_Artemis_b_brand_Artemis b_brand_Novum_b_brand_Artemis

1 .1550 NaN
. . .

Summary o f parameter cha ins

Non−random c o e f f i c i e n t s
These outputs have had the s c a l i n g used in e s t imat ion app l i ed to them

Mean SD
gamma_Artemis_reg_user 0 .0543 0.0214
gamma_Artemis_university −0.0244 0.0129
. . .
tau_dominance_4 2.1014 0.1065

Upper l e v e l model r e s u l t s f o r mean parameters f o r under ly ing Normals
These outputs have NOT had the s c a l i n g used in es t imat ion app l i ed to them

Mean SD
b_brand_Artemis 1 .4716 0.0627
b_brand_Novum 1.2149 0.0652
eta 0 .0000 0.0000

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (means ac ro s s i t e r a t i o n s )
These outputs have NOT had the s c a l i n g used in es t imat ion app l i ed to them

b_brand_Artemis b_brand_Novum eta
b_brand_Artemis 0 .0877 0.0000 0
b_brand_Novum 0.0000 0.1236 0
eta 0 .0000 0.0000 1

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (SD ac ro s s i t e r a t i o n s )
These outputs have NOT had the s c a l i n g used in es t imat ion app l i ed to them

b_brand_Artemis b_brand_Novum eta
b_brand_Artemis 0 .0218 0.0000 0
b_brand_Novum 0.0000 0.0311 0
eta 0 .0000 0.0000 0

Summary o f d i s t r i b u t i o n s o f random c o e f f i e n t s ( a f t e r d i s t r i b u t i o n a l t rans forms )
These outputs have had the s c a l i n g used in e s t imat ion app l i ed to them

Mean SD
b_brand_Artemis 1 .4749 0.2949
b_brand_Novum 1.2120 0.3517
eta 0 .0008 0.9915

Resu l t s f o r p o s t e r i o r means f o r random c o e f f i c i e n t s
These outputs have had the s c a l i n g used in e s t imat ion app l i ed to them

[ , 1 ] [ , 2 ]
b_brand_Artemis 1 .4715 0.0899
b_brand_Novum 1.2149 0.1257
eta 0 .0061 0.7823

Figure 20: Bayesian estimation in Apollo: output (extracts)
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> base_forecast <- apollo_prediction(model, apollo_probabilities, apollo_inputs, modelComponent="choice")
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .
> mean(base_forecast[,1]+base_forecast[,2])
[ 1 ] 0 .6984594
> databaseprice_1 = 1.5 ∗ databaseprice_1
> databaseprice_2 = 1.5 ∗ databaseprice_2

> change_forecast <- apollo_prediction(model, apollo_probabilities, apollo_inputs, modelComponent="choice")
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .

> mean(change_forecast[,1]+change_forecast[,2])
[ 1 ] 0 .4937169
> databaseprice_1 = 1/1.5 ∗ databaseprice_1
> databaseprice_2 = 1/1.5 ∗ databaseprice_2

Figure 21: Running apollo_prediction after Bayesian estimation

(showing the membership of alternative j in nest m) that 0 ≤ αj,m ≤ 1, ∀j,m and
∑

j αj,m =
1, ∀m. Only two-level versions of CNL are available through the apollo_cnl function.

apollo_dft allows the user to estimate decision field theory (DFT) models, a popular dynamic
preference accumulation structure in mathematical psychology (Busemeyer and Townsend,
1992, 1993) which has recently made the transition into mainstream choice modelling (Hancock
et al., 2019).

apollo_el provides an implementation of an exploded logit model for ranking data (or best-
worst data, see Lancsar et al. 2013) where the user can allow for scale differences across stages.

apollo_mdcev allows the user to estimate the Multiple Discrete Continuous Extreme Value
(MDCEV) model (Bhat, 2008), where no restriction are imposed on the profile to be used and
where the model can be used with or without an outside good.

apollo_mdcnev provides an implementation of the Multiple Discrete Continuous Nested Ex-
treme Value (MDCNEV) model of Pinjari and Bhat (2010). The implementation of MDCNEV
in Apollo allows for only a single level of nesting and is also only valid for models with an
outside good, i.e. a product that is consumed in every observation.

apollo_nl allows the estimation of nested logit (NL) models (Daly and Zachary, 1978; Mc-
Fadden, 1978; Williams, 1977) without any constraints on the number of layers in the nesting
structure. We adopt the efficient implementation of Daly (1987) but adapt it to the more
commonly used version which divides the utilities by the nesting parameter in the within nest
probabilities (see the discussions in Train 2009, chapter 4, and Koppelman and Wen 1998).

apollo_normalDensity is an implementation of the Normal probability density function for
continuous dependent variables (or ordinal dependent variables that are treated as continuous).

In general, all models implemented in Apollo allow for prediction as well as estimation (except for
apollo_normalDensity and apollo_el) and also allow for the inclusion of random heterogeneity
in model parameters, with very few restrictions. In particular, only the α parameters in CNL,
the σ parameters in MDCEV and the θ parameters in MDCNEV need to be kept non-random.

As already mentioned, users of Apollo are not restricted to those models for which functions
are available in the code. Any model that yields a probability for an outcome can be used in the
code and parameters for the model can be estimated using either classical or Bayesian estima-
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tion. Users can either create new functions in R that are defined outside apollo_probabilities
much in the same way as for example apollo_mnl or simply code the probabilities for a model
inside apollo_probabilities. An illustration of the latter approach is shown in the expectation-
maximisation example in the online manual, which also discusses the requirements for user pro-
vided functions.

6.3 Other heterogeneity

6.3.1 Intra-individual heterogeneity

We have discussed in detail the implementation of continuous random heterogeneity at the level of
individual decision makers. Apollo allows for a very general use of continuous random coefficients
and works for models allowing for intra-individual mixing (i.e. heterogeneity at the level of
individual choices), inter-individual mixing (i.e. heterogeneity at the level of individual people),
as well as a mixture of the two.

A very flexible implementation is used that minimises the changes in the code that are required
to introduce random coefficients or to change between the different layers of integration, with the
code largely remaining the same. In terms of internal implementation, the package works with
arrays in three dimensions. For a model without continuous random coefficients, the likelihood for
a model (prior to multiplying across observations for the same individual) is contained in a column
vector of length O, where O is the number of observations in the data. If we introduce continuous
random heterogeneity at the level of individual people, with multiple choices per person, the
likelihood is given by a OxR1 matrix, with one row per observation, and one column per draw
from the random coefficients, where we use R1 draws per random coefficient and per individual.
Here, the same draws would be reused across the Tn rows for a given individual n, meaning
that we would have N sets of draws, where N is the number of individuals. In the presence
of additional heterogeneity at the level of individual observations, the likelihood becomes a 3-
dimensional array (i.e. a cube) of dimensions OxR1xR2, where in this third dimension, different
draws are used across different choices for the same individual. As described by Hess and Train
(2011), a given inter-individual draw is then associated with multiple intra-individual draws. If
only intra-individual heterogeneity is used, the cube collapses to an array of dimensions Ox1xR2,
i.e. a matrix but with columns going into the third dimension rather than second dimension.

The inclusion of intra-individual heterogeneity in Apollo simply requires the definition of a dif-
ferent type of draws, which are distributed across and within individuals (using intraDrawsType,
intraNDraws, intraUnifDraws and intraNormDraws in apollo_draws) and the averaging across
intra-individual draws (using apollo_avgIntraDraws) prior to taking the product across choices
for the same individual (apollo_panelProd).

6.3.2 Discrete mixtures and latent class

Apollo offers the same degree of flexibility with latent class and discrete mixture models as with
continuous mixture models. Full details of the implementation of latent class models are given in
the online manual. The implementation follows an approach very similar to that for continuous
random heterogeneity. The user implements a function called apollo_lcPars, which performs
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a role analagous to apollo_randCoeff for continuous mixtures. Like apollo_randCoeff, this
function takes apollo_beta and apollo_inputs as inputs and generates a new list which contains
the parameters that vary across classes as well as the class allocation probabilities. The outputs
from this function can then be used inside apollo_probabilities, typically with a loop over
classes. Functions are also available to compute conditional and unconditional heterogeneity from
latent class models, using apollo_lcConditionals and apollo_lcUnconditionals, respectively.
Apollo also allows users to combine continuous random heterogeneity with latent classes (cf.
Greene and Hensher, 2013). Continuous heterogeneity can be allowed for both in the within-class
probabilities and in the class membership probabilities.

6.4 Additional post-estimation tools

A number of additional post-estimation tools are included in Apollo, namely:

apollo_bootstrap allows estimation of the variance of parameters through a simple block
bootstrap. Given a number of repetitions, this function generates as many new samples as
requested, by sampling individuals (i.e. blocks of observations) with replacement from the
original dataset. Then parameters are estimated for each of these new samples. Finally, the
covariance matrix of the sequence of estimated parameters is calculated. This matrix is in
itself an estimator of the covariance matrix of the parameter estimates.

apollo_combineResults to produce an output file combining the estimates from multiple mod-
els run on the same data.

apollo_fitsTest compares the performance of the estimated model to predict the chosen
alternative for different subsets of the data

apollo_loadModel allows the user to load into memory a model object previously saved using
apollo_saveOutput, thus permitting the use of all post-estimation functions.

apollo_lrTest provides an implementation of the likelihood ratio test.
apollo_outOfSample estimates models on multiple subsets of the data and then compares the
per observation log-likelihood to that in the remaining (hold-out) sample.

apollo_sharesTest provides an implementation of a routine like apply tables in ALogit (ALogit,
2016), looking at the recovery of market shares in given subset of the data.

7 Summary

In this paper, we have given a brief overview of the capabilities of Apollo. We have illustrated
how a popular class of models, namely hybrid choice structures, can be easily implemented in
Apollo and estimated using either classical or Bayesian estimation. Numerous functions are then
available for processing of the results. Of course, a user can also make use of the many tabulation
and plotting functions available in R for further analysis and formatting of model results.

Throughout the paper, we made reference to the online manual which contains more extensive
details on the available functions, as well as numerous examples showing the implementation of
different models in Apollo. We again strongly recommend that any prospective user of Apollo
studies the online manual in depth after the general introduction provided in this paper.
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In the years to come, it is our hope to add many exciting new capabilities to Apollo. This
includes functions for new model structures, further computational improvements by coding more
of the underlying calculations in C++ (Eddelbuettel and François, 2011), and making further
refinements to the implementation of expectation-maximisation (EM) routines (cf. Train, 2009,
ch. 14).
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