
Apollo: a flexible, powerful and customisable freeware
package for choice model estimation and application

version 0.2.5

User manual

www.ApolloChoiceModelling.com

Stephane Hess & David Palma
Choice Modelling Centre

University of Leeds

Release date: 31 July 2021
Manual edited: 12 November 2021

www.ApolloChoiceModelling.com

1

Apollo is licensed under GNU GENERAL PUBLIC LICENSE v2 (GPL-2)
https: // cran. r-project. org/ web/ licenses/ GPL-2 .

Apollo is provided free of charge and comes WITHOUT ANY WARRANTY of any kind. In
no event will the authors or their employers be liable to any party for any damages resulting
from any use of Apollo.

This manual is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Interna-
tional License
https: // creativecommons. org/ licenses/ by-nd/ 4. 0/ .

While the Apollo package is the result of many years of development, the core of this work was
carried out under the umbrella of the European Research Council (ERC) funded consolidator grant
615596-DECISIONS. We are grateful to the many colleagues who provided suggestions and/or
tested the code extensively, including Chiara Calastri, Romain Crasted dit Sourd, Andrew Daly,
Jeff Dumont, Joe Molloy and Basil Schmid. We would like to especially thank Thijs Dekker for
his contributions to precursors of Apollo and his guidance on the EM algorithm, Thomas Hancock
for his implementation of Decision Field Theory and Annesha Enam for her contributions on
MDCEV without an outside good. We are also grateful to Kay Axhausen for making the Swiss
public transport route choice dataset available.

https://cran.r-project.org/web/licenses/GPL-2
https://creativecommons.org/licenses/by-nd/4.0/

Contents

1 Introduction 8

2 Installing Apollo, loading the libraries and running the code 13

3 Data format and datasets used for examples 15
3.1 RP-SP mode choice dataset: apollo_modeChoiceData 16
3.2 SP route choice dataset: apollo_swissRouteChoiceData 16
3.3 Health attitudes SP: apollo_drugChoiceData . 16
3.4 Time use data: apollo_timeUseData . 16

4 General code structure and components: illustration for MNL 18
4.1 Initialising the code . 18
4.2 Reading and processing the data . 21
4.3 Model parameters . 21
4.4 Validation and preparing user inputs . 24
4.5 Likelihood component: the apollo_probabilities function 24

4.5.1 Initialisation . 25
4.5.2 Model definition . 25
4.5.3 Function output . 27

4.6 Estimation . 28
4.7 Reporting and saving results . 32

5 Other model components 39
5.1 Other RUM-consistent discrete choice models . 39

5.1.1 Nested Logit . 39
5.1.2 Cross-nested Logit . 42

5.2 Non-RUM decision rules for discrete choice . 45
5.2.1 Random regret minimisation (RRM) . 45
5.2.2 Decision field theory (DFT) . 47

5.3 Models for ranking, rating and continuous dependent variables 50
5.3.1 Exploded Logit . 50
5.3.2 Ordered Logit and Ordered Probit . 53
5.3.3 Normally distributed continuous variables 56

2

Contents 3

5.4 Discrete-continuous models . 57
5.4.1 Multiple Discrete Continuous Extreme Value (MDCEV) model 57
5.4.2 Multiple Discrete Continuous Nested Extreme Value (MDCNEV) model . . 61

5.5 Adding new model types . 63

6 Incorporating random heterogeneity 65
6.1 Continuous random coefficients . 65

6.1.1 Introduction . 65
6.1.2 Example model specification . 68
6.1.3 Implementation . 70
6.1.4 Estimation . 74
6.1.5 Error components . 74

6.2 Discrete mixtures and Latent Class . 76
6.3 Combining Latent Class with continuous random heterogeneity 81
6.4 Multi-threading capabilities . 82

7 Joint estimation of multiple model components 86
7.1 Joint estimation on RP and SP data . 87
7.2 Joint best-worst model . 89
7.3 Hybrid choice model . 90

8 Bayesian estimation 96

9 Pre and post-estimation capabilities 102
9.1 Pre-estimation analysis of choices . 102
9.2 Reading in a previously saved model object . 103
9.3 Calculating model fit for given parameter values . 104
9.4 Likelihood ratio tests against other models . 105
9.5 Ben-Akiva & Swait test . 106
9.6 Model predictions . 106
9.7 Market share recovery for subgroups of data . 110
9.8 Comparison of model fit across subgroups of data 112
9.9 Functions of model parameters and associated standard errors 112
9.10 Unconditionals for random parameters . 114

9.10.1 Continuous random heterogeneity . 114
9.10.2 Latent class . 115

9.11 Conditionals for random coefficients . 115
9.11.1 Continuous random coefficients . 116
9.11.2 Latent class . 118

9.12 Summary of results for multiple models . 120

10 Debugging 122

Contents 4

11 Extensions 126
11.1 Starting value search . 126
11.2 Out of sample fit (Cross validation) . 127
11.3 Bootstrap estimation . 129
11.4 Expectation-maximisation (EM) algorithm . 131

11.4.1 EM algorithm for LC model . 132
11.4.2 MMNL model with full covariance matrix for random coefficients 134

11.5 Iterative coding of utilities for large choice sets . 138

12 Frequently asked questions 141
12.1 General . 141
12.2 Installation and updating of Apollo . 141
12.3 Data . 142
12.4 Model specification . 143
12.5 Errors and failures during estimation . 145
12.6 Model results . 147

A Apollo versions: timeline, changes and backwards compatibility 150

B Data dictionaries 174

C Index of example files 179

D Overview of functions, lists and elements 183

E Detailed description of model object 204

Bibliography 214

Index: Apollo syntax 215

List of Figures

4.1 General structure of an Apollo model file . 19
4.2 Code initialisation . 20
4.3 Loading data, selecting a subset and creating an additional variable 21
4.4 Setting names and starting values for model parameters, and fixing some paramet-

ers to their starting values . 23
4.5 Using apollo_readBeta to load results from an earlier model as starting values . . 24
4.6 Running apollo_validateInputs . 24
4.7 The apollo_probabilities function: example for MNL model 36
4.8 Running apollo_estimate on MNL model . 37
4.9 On screen output obtained using apollo_modelOutput for MNL model 38

5.1 Nested Logit implementation (extract) . 41
5.2 Nested Logit tree structure after estimation . 42
5.3 Cross-nested Logit implementation (extract) . 44
5.4 Cross-nested Logit structure after estimation . 45
5.5 Implementation of random regret MNL model . 46
5.6 An example of a decision-maker stopping upon reaching either an internal or ex-

ternal threshold . 47
5.7 DFT implementation . 51
5.8 Exploded Logit implementation . 54
5.9 MDCEV implementation without outside good . 60
5.10 MDCEV implementation with an outside good . 62
5.11 MDCNEV implementation and call to apollo_estimate using scaling 63

6.1 Defining settings for generation of draws . 71
6.2 The apollo_randCoeff function . 72
6.3 The apollo_probabilities function for a MMNL model 73
6.4 Running apollo_estimate for MMNL using 3 cores 75
6.5 Using error components for heteroskedasticity . 75
6.6 Using error components for a pseudo-panel effect 76
6.7 The apollo_lcPars function . 78
6.8 Implementing choice probabilities for Latent Class 79

5

List of Figures 6

6.9 The apollo_randCoeff and apollo_lcPars functions for a Latent Class model
with continuous random heterogeneity . 82

6.10 Implementing choice probabilities for Latent Class with continuous random hetero-
geneity . 83

6.11 Running apollo_speedTest . 85

7.1 Joint RP-SP model on mode choice data . 88
7.2 On screen output for RP-SP model . 90
7.3 Best-Worst model on drug choice data . 91
7.4 Hybrid choice model: draws and latent variable . 93
7.5 Hybrid choice model with ordered measurement model: defining probabilities . . . 94
7.6 Hybrid choice model with continuous measurement model: zero-centering indicat-

ors and defining probabilities . 95

8.1 Bayesian estimation in Apollo: model settings . 97
8.2 Bayesian estimation in Apollo: estimation process 99
8.3 Bayesian estimation in Apollo: estimation process (parameter chains) 100
8.4 Bayesian estimation in Apollo: output (extracts) 101

9.1 Running apollo_choiceAnalysis (syntax and excerpt of output) 103
9.2 Running apollo_llCalc . 104
9.3 Running apollo_lrTest . 105
9.4 Running apollo_basTest . 107
9.5 Running apollo_prediction . 109
9.6 Running apollo_sharesTest . 111
9.7 Running apollo_fitsTest . 113
9.8 Running apollo_deltaMethod . 114
9.9 Running apollo_unconditionals and apollo_conditionals 117
9.10 Running apollo_lcUnconditionals and apollo_lcConditionals 119

10.1 Example of failure during model estimation . 122
10.2 Debugging step 1: testing with functionality=“estimate" 123
10.3 Debugging step 2: analysing choices for respondents with zero likelihood value . . . 124
10.4 Debugging step 3: actual debugging . 124

11.1 Running apollo_searchStart . 128
11.2 Running apollo_outOfSample . 130
11.3 Running apollo_bootstrap . 132
11.4 EM algorithm for Latent Class: setup . 135
11.5 EM algorithm for Latent Class: estimation . 136
11.6 EM algorithm for Mixed Logit: setup . 138
11.7 EM algorithm for Mixed Logit: estimation . 139
11.8 Defining utilities for large choice sets (Apollo_example_30.r) 140

List of Tables

B.1 Data dictionary for apollo_modeChoiceData.csv 175
B.2 Data dictionary for apollo_swissRouteChoiceData.csv 176
B.3 Data dictionary for apollo_drugChoiceData.csv 177
B.4 Data dictionary for apollo_timeUseData.csv . 178

C.1 Index of example files . 180
C.2 Functions used by Apollo, with inputs and outputs 181

D.1 Functions used by Apollo, with inputs and outputs 184
D.2 Lists used by Apollo . 190
D.3 Elements in lists and functions used by Apollo . 193

E.1 Elements inside a model object estimated by Apollo 205

7

Chapter 1

Introduction

Choice modelling techniques have been used across different disciplines for over four decades
(see McFadden 2000 for a retrospective and Hess and Daly 2014 for recent contributions and
applications across fields). For the majority of that time, the number of users of especially the
most advanced models was rather small, and similarly, a small number of software packages was
used by this community. In the last two decades, the pool of users of choice models has expanded
dramatically, in terms of their number as well as the breadth of disciplines covered. At the
same time, we have seen the development of new modelling approaches, and gains in computer
performance as well as software availability have given a growing and broader group of users access
to ever more advanced models.

These developments have also seen a certain fragmentation of the community in terms of
software, which in part runs along discipline lines1. Notwithstanding the most advanced users
who develop their own code for often their own models, there is first a split between the users of
commercial software and those using freeware tools. Commercial packages are generally compu-
tationally more powerful but may have more limitations in terms of available model structures
or the possibility for customisation. On the other hand, freeware options can have limitations in
terms of performance and user friendliness but may benefit from more regular developments to
accommodate new model structures.

A further key differentiation between packages is the link between user inputs and interface
and the actual underlying methodology. Many existing packages, both freeware and commercial,
are black box tools where the user has little or no knowledge of what goes on “under the hood”.
While this has made advanced models accessible to a broader group of users, a disconnect between
theory and software not only increases the risk of misinterpretations and misspecifications, but
can also hide relevant nuances of the modelling process and mistakenly give the impression that
choice models are “easy tools” to use. On the other hand, software that relies on users to code all
components from scratch arguably imposes too high a bar in terms of access.

Software also almost exclusively allows the use of only either classical estimation techniques or
Bayesian techniques. This fragmentation again runs largely in parallel with discipline boundaries

1We intentionally do not refer to specific packages, so as not to risk any misrepresentations but also given the
growing number of freeware tools, some of which we might not be aware of.

8

Chapter 1. Introduction 9

and has only served to further contribute to the lack of interaction/dialogue between the classical
and Bayesian communities.

A final difference arises in terms of software environment. While commercial software usually
provides a custom user interface, freeware options in general (though not exclusively) rely on
existing statistical or econometric software and are made available as packages within these. The
latter at times means that freeware packages are not really free to use (if the host software is
not), while there are also cases of software being accessible only in a single operating system (e.g.
Windows or Linux/MacOS, not across systems).

The above points served in large part as the motivation for the development of Apollo. Our
aims were:

Free access: Apollo is a completely free package which does not rely on commercial statistical
software as a host environment.
Big community: Apollo relies on R (R Core Team, 2017), which is very widely used across
disciplines and works well across different operating systems.
Transparent, yet accessible: Apollo is neither a blackbox nor does it require expert econo-
metric skills. The user can see as much or as little detail of the underlying methodology as
desired, but the link between inputs and outputs remains.
Ease of use: Apollo combines easy to use R functions with new intuitive functions without
unnecessary jargon or complexity.
Modular nature: Apollo uses the same code structure independently of whether the simplest
Multinomial Logit model is to be estimated, or a complex structure using random coefficients
and combining multiple model components.
Fully customisable: Apollo provides functions for many well known models but the user is
able to add new structures and still make use of the overall code framework. This for example
extends to coding expectation-maximisation routines.
Discrete and continuous: Apollo incorporates functions not just for commonly used discrete
choice models but also for a family of models that looks jointly at discrete and continuous
choices.
Novel structures: Apollo goes beyond standard choice models by incorporating the ability
to estimate Decision Field Theory (DFT) models, a popular accumulator model from math-
ematical psychology.
Classical and Bayesian: Apollo does not restrict the user to either classical or Bayesian
estimation but easily allows changing from one to the other.
Easy multi-threading: Apollo allows users to split the computational work across multiple
processors without making changes to the model code.
Not limited to estimation: Apollo provides a number of pre and post-estimation tools, in-
cluding diagnostics as well as prediction/forecasting capabilities and posterior analysis of
model estimates.

While Apollo is easy to use, we also remain of the opinion that users of choice modelling software
should understand the actual process that happens during estimation. For this reason, the user
needs to explicitly include or exclude calls to specific functions that are model and dataset specific.
For example, in the case of repeated choice data, the user needs to include a call to a function

Chapter 1. Introduction 10

that takes the product across choices for the same person (apollo_panelProd). Or in the case
of a Mixed Logit model, the user needs to include a call to a function that averages across draws
(apollo_avgInterDraws and/or apollo_avgIntraDraws). If calls to these functions are missing
when needed, or if a user makes a call to a function that should not be used in the specific model,
the code will fail, and provide the user with feedback about why this happened. This is in our
view much better than a situation where the software permits users to make mistakes and fixes
them behind the scenes.

Users of Apollo are asked to acknowledge the use of the software by citing the academic paper:

• Hess, S. & Palma, D. (2019), Apollo: a flexible, powerful and customisable freeware package
for choice model estimation and application, Journal of Choice Modelling

and the manual for the version used in their work, e.g:

• Hess, S. & Palma, D. (2020), Apollo version 0.01, www.ApolloChoiceModelling.com.

Apollo is the culmination of many years of development of individual choice modelling routines,
starting with code developed by Hess while at Imperial College (cf. Hess, 2005) using Ox (Doornik,
2001). This code was gradually transitioned to R at the University of Leeds, with substantial
further developments once Palma joined the team in Leeds, bringing with him ideas developed at
Pontificia Universidad Católica de Chile (cf. Palma, 2016). No code is an island, and we have been
inspired especially by ALogit (ALogit, 2016) and Biogeme (Bierlaire, 2003), and Apollo mirrors
at least some of their features.

This manual presents an overview of the capabilities of the Apollo package and serves as a user
manual. It is accompanied online at www.ApolloChoiceModelling.com by numerous example files
(some of which are used in this manual) and a number of free to use datasets. Users are also
encouraged to visit the online help forum where numerous questions on specification have already
been answered. In adddition to the detailed information in this manual, users can also obtain help
on specific functions directly in R, using e.g. ?apollo_mnl for help on the apollo_mnl function.

In line with our earlier point about other software, this manual does not include any com-
parisons with other packages, in terms of capabilities or speed. The code has been widely tested
to ensure accuracy. In our view, any speed comparison offers little practical benefit. For simple
models, there is a clear advantage for highly specialised code, while, for complex models, any
benchmarking is impacted substantially by the specific implementation and degree of optimisa-
tion used.

In the remainder of this manual, we do not provide details on common R functions and syntax
used in the code, or how to run R code, and the reader is instead referred to R Core Team (2017).
For the syntax shown in this manual, it is just worth noting that in R, a line starting with one
or more # characters is a comment. We tend to use a single # for optional lines that a user can
comment in or out, and ### for actual comments. In addition, two other points are worth raising.

• In complex models, the R syntax file for Apollo can become quite large, and a user may
wish to split this into separate files, e.g. one for loading and processing the data, one for
the actual model definition, etc, and then have a master file which calls the individual files
(using source).

www.ApolloChoiceModelling.com
www.ApolloChoiceModelling.com

Chapter 1. Introduction 11

• For the predefined functions, the order of arguments passed to the function should be kept
in the order specified in this manual2.

Another point to raise concerns the specific naming conventions we have adopted for functions
and inputs to functions. All functions within the code start with the prefix apollo_. This is then
followed by the “name” of the actual function in a single word, where any new part of the name
starts with a capital letter, for example apollo_modelOutput. The prefix apollo_ is also used
for a number of key non-function objects in the code, namely:

• the user defined settings apollo_control, apollo_HB and apollo_draws;
• the list of parameters apollo_beta and fixed parameters apollo_fixed; and
• the automatically generated combined inputs variable apollo_inputs.

The functions in Apollo take numerous inputs and for ease of programming, these are often com-
bined into a list object. The naming convention used for these is to have the name of the function
(without the apollo_ prefix) followed by _settings, for example in modelOutput_settings. Fi-
nally, individual variables/settings do not have a prefix and again use the convention of capitalising
the first letter of any new word except for the start, for example in printDiagnostics.

Before we proceed, a brief explanation is needed as to our choice of the name Apollo. Several
existing packages refer to specific models in their name (e.g. ALogit, NLogit) which is not ap-
plicable in our case given the wider set of models we cover. We failed miserably in our efforts to
come up with an imaginative acronym like Biogeme and so went back to Greek mythology. The
obvious choice would have been Cassandra, with her gift of prophecy and the curse that nobody
listened to her (a bit like choice modellers trying to sell their ideas to policy makers). Alas, the
name has already been used for a large database package, so we resorted to Apollo, the Greek
god of prophecy who gave this gift to Cassandra in the first place. And, as a student more versed
in Greek mythology than ourselves told us, it was Apollo who slayed Python.

The remainder of this manual is organised as follows. The following chapter talks about in-
stallation before Chapter 3 introduce a number of datasets used throughout the manual. Chapter
4 provides an in-depth introduction to the code structure, using the example of a simple Mul-
tinomial Logit model. This is followed in Chapter 5 by an overview of other available model
components, and a description of how the user can add his/her own models. Chapter 6 covers
random heterogeneity, both discrete and continuous while Chapter 7 discusses joint estimation
of multiple model components, with a focus on hybrid choice models. Bayesian estimation is
covered in Chapter 8 with (mainly) post-estimation capabilities discussed in Chapter 9. Chapter
10 looks at debugging an Apollo model that fails in estimation, and a few extensions are discussed
in Chapter 11. Finally, Chapter 12 addresses a set of frequently asked questions. A number of
appendices are also included. Appendix A summarises changes across different versions of Apollo.

2Unless a user explicitly prefaces each argument with the name used in the function. For example, if a function
is defined to take two inputs, namely dependent and explanatory, e.g. model_prob(dependent,explanatory),
and the user wants to use choice and utility as the inputs, then the function can be called as
model_prob(choice,utility) but not as model_prob(utility,choice). The latter change in order is only pos-
sible if the function is called explicitly as model_prob(explanatory=utility,dependent=choice), which is the
same as model_prob(dependent=choice,explanatory=utility).

Chapter 1. Introduction 12

Appendix B contains data dictionaries, Appendix C a list of the example files and Appendix D
an index of functions and variables in Apollo.

Chapter 2

Installing Apollo, loading the libraries
and running the code

Apollo runs in R, with a minimum R version of 4.0.0. Apollo can be installed in two ways. If
an internet connection is available, the easiest way to install it is to type the following command
into the R console. This will also install all dependencies, i.e. other routines used by the Apollo
package1.

install.packages("apollo")

The second way is to install it from a file. A file containing the source code can be obtained
at www.ApolloChoiceModelling.com. Then, the following command must be typed into the R
console.

install.packages("C : \ . . . \apollo_v0.2.4.tar.gz", repos = NULL, type = "source")

where C : \ . . . \apollo_v0.2.4.tar.gz must be replaced by the correct path to the file in the
user’s computer, using the version that was downloaded. This will not automatically install
dependencies.

The installation of the package does not need to be repeated every time R is started nor every
time a model is to be estimated. Instead, it only needs to be done once for each new release of
Apollo (unless R itself is updated, then the installation must be repeated).

Every time users want to estimate a model, they need to load Apollo into memory. This can
be achieved by simply running the following line of code in R, or by including it in the source file
of each model, prior to running any Apollo functions.

library(apollo)

Users are encouraged to check for updated versions of the package every few months. Updates,
when available, can be acquired by simply re-installing the package. Installation from CRAN will

1For installation on macOS, users should install from binaries, rather than source.

13

Chapter 2. Installing Apollo, loading the libraries and running the code 14

install the latest release. Previous releases will be available from the software website, where users
also have access to versions with new features that are under development prior to a full release.
These versions need to be compiled locally, and users require Rtools for this purpose.

Most users will run R from a shell such as RStudio (RStudio Team, 2015). A full Apollo
model file, or any other R script, can also be run from the command line, without accessing R
directly. This can be useful when running many scripts unattended, or when submitting jobs to
a computer cluster. The command to do this changes depending on the operation system and
the local directory structure. In Linux, the command is as follows: R CMD BATCH model.R. In
Windows, the command is for example as follows: "C:\Program Files\R\R-3.6.3\bin\R.exe"
CMD BATCH model.R. Note that in both cases, the working directory should be set within the model
file using the setwd function. The output that would normally be printed to the R Terminal will
instead be written to a file called model.Rout, which can be opened with any plain text editor.

Chapter 3

Data format and datasets used for
examples

Apollo makes use of a format where all relevant information for a given observation is stored
in the same row. Using a simple discrete choice context, this would imply that the data for
all alternatives is included in the same row, rather than one row per alternative. Some choice
modellers refer to this as the wide format, as opposed to the long format, which would have one
row per alternative. This terminology is in fact not very helpful as, in the context of repeated
measurements data, the term wide refers to a format where all measurements for the same person
are included in one line. In the one row per observation format in a choice modelling context,
there will still be multiple rows for different choices for the same person. There are good reasons
for why Apollo is using the one row per observation format. This format is the more common
format in choice modelling, uses less space, and is also more general in allowing for a mixture
of different dependent variables in the same data. Analysts whose data is in the one row per
alternative format need to reshape it prior to using it in Apollo.

This chapter presents a number of datasets used throughout the manual and in the on-
line examples. Below, we give brief introductions to the datasets, with details on vari-
able names provided in Appendix B. The datasets are included in the Apollo package it-
self. A user can access a given dataset, say the apollo_drugChoiceData, by typing
data("apollo_drugChoiceData", package="apollo") in the console. To use any data in
Apollo, it needs to be stored in an object called database, and the user would need to use
database=get(data("apollo_drugChoiceData", package="apollo")). While this is possible
for the four datasets included with Apollo, the majority of applications will of course rely on
users’ own datasets, which will be read in from a file, typically of the comma separated volume
(csv) format. This is also the approach we use with the examples in the manual so as to illustrate
the process of reading from files to the user. The four datasets are available as csv files from the
Apollo website at www.ApolloChoiceModelling.com.

15

www.ApolloChoiceModelling.com

Chapter 3. Data format and datasets used for examples 16

3.1 RP-SP mode choice dataset: apollo_modeChoiceData

Our first resource is a synthetic dataset looking at mode choice for 500 travellers. For each
individual, the data contains two revealed preference (RP) inter-city trips, where the possible
modes were car, bus, air and rail, and where each individual has at least two of these four modes
available to them. The journey options are described on the basis of access time (except for car),
travel time and cost, with times in minutes, and costs in £. The data then also contains 14 stated
preference (SP) tasks per person, using the same alternatives as those available on the RP journey
for that person, but with an additional categorical quality of service attribute added in for air
and rail, taking three levels, namely no frills, wifi available, or food available. For each individual,
the dataset also contains information on gender, whether the journey was a business trip or not,
and the individual’s income.

3.2 SP route choice dataset: apollo_swissRouteChoiceData

Our second dataset comes from an actual SP survey of public transport route choice conducted in
Switzerland (Axhausen et al., 2008). A set of 388 people were faced with 9 choices each between
two public transport routes, both using train (leading to 3, 492 observations in the data). The
two alternatives are described on the basis of travel time, travel cost, headway (time between
subsequent trains/busses) and the number of interchanges. For each individual, the dataset
additionally contains information on income, car availability in the household, and whether the
journey was made for commuting, shopping, business or leisure.

3.3 Health attitudes SP: apollo_drugChoiceData

Our third dataset is a synthetic dataset looking at drug choices for the treatment of headaches for
1, 000 individuals. For each person, the data contains 10 SP tasks, each giving a choice between
four alternatives, the first two being products by recognised drug companies while the final two
are generic products. In each choice task, a full ranking of the four alternatives is given. The
drugs are described in terms of brand (two recognised brands and three generic brands), country
of origin (six countries), drug features (three types of features), risk of side effects and price.
The possible levels for the attributes differ between the first two (branded) and last two (generic)
alternatives. For each individual, the dataset additionally contains answers to four attitudinal
questions as well as information on whether an individual is a regular user, their education and
their age.

3.4 Time use data: apollo_timeUseData

Our fourth dataset comes from a GPS tracking survey on time use conducted in the UK (Calastri
et al., 2019). A set of 447 individuals completed a digital activity log for up to 14 days, providing
2,826 days of data (first day discarded for each person). For each day, the amount of time
spent in each of twelve activities is recorded, as well as some of the individual’s characteristics.

Chapter 3. Data format and datasets used for examples 17

The activities considered were dropping-off or picking-up, working, going to school, shopping,
private business, getting petrol, social or leisure activities, vacation, doing exercise, being at home,
travelling, and a last activity grouping the time allocated to other activities by the individual.

Chapter 4

General code structure and
components: illustration for MNL

In this chapter, we provide an introduction to the general capabilities of the Apollo package by
using the example of a Multinomial Logit (MNL model (McFadden, 1974), where the probability
of person n choosing alternative i (out of j = 1, . . . , J) in choice situation t is given by:

Pi,n,t =
eVi,n,t∑J
j=1 e

Vj,n,t
, (4.1)

with Vi,n,t giving the systematic component of the utility for alternative i for person n in choice
situation t.

We apply this to the simple mode choice stated preference survey introduced in Section
3.1, where we use the SP part of this data, i.e. 14 choices each for 500 individuals. This
example is available in the file Apollo_example_3.r and uses a very detailed specification of
the utility function. More barebones examples are also available in Apollo_example_1.r and
Apollo_example_2.r, which are models without any socio-demographics, estimated on the RP
and SP data, respectively.

The structure of an Apollo model file varies across specifications, but a general overview is
shown in Figure 4.1, and we now look at these steps in turn.

4.1 Initialising the code

The first step in every use of Apollo is to initialise the code. These steps are illustrated in Figure
4.2. In an optional step, we clear the memory/workspace by using rm(list = ls()), before
loading the Apollo library. This is followed by calling the apollo_initialise function, which
‘detaches’ variables1 and makes sure that output is directed to the console rather than a file. This

1In R, a user can ‘attach’ an object, which means that individual components in it can be called by name.

18

Chapter 4. General code structure and components: illustration for MNL 19

Initialisation
• Clear memory (optional but recommended)
• Load Apollo library
• Set core controls

Data
• Load data into database object
• Optionally add any additional variables or apply transformations as required
• Optionally run pre-estimation analysis of the data

Model parameters
• Define model parameters
• Optionally indicate any parameters that are to be kept fixed
• For continuous mixture models, define apollo_draws settings and create

apollo_randCoeff function
• For latent class models, define apollo_lcPars function

Run apollo_validateInputs function

Model definition
• Define apollo_probabilities function

• Create likelihood functions for individual model components
• Combine into overall model likelihood if multiple components exist
• Depending on the model, average over draws, latent classes and take

products across choices
• Return output with one likelihood value per individual in estimation

Estimation and model output
• Run apollo_estimate function
• Run apollo_modelOutput for on screen output
• Run apollo_saveOutput for on output to file

Run optional post estimation procedures

Figure 4.1: General structure of an Apollo model file

Chapter 4. General code structure and components: illustration for MNL 20

function is called without any arguments and does not return any output variables, i.e.:

apollo_initialise()

The user next sets a number of core controls in a list called apollo_control, where in our case,
we only give the name of the model (where any output files will use this name too), provide a
brief description of the model (for use in the output) and indicate the name (in quotes) of the
column in the data which contains the identifier variable for individual decision makers. Each
time, the entry on the left is an Apollo-defined variable whose name is not to be changed, and
the user provides the value on the right, followed by a comma, except for the last element.
rm(l i s t = l s ())

l i b r a r y (apo l l o)

a p o l l o_ i n i t i a l i s e ()

apo l l o_contro l = l i s t (
modelName = "Apollo_example_3 " ,
modelDescr = "MNL model with soc io−demographics on mode cho i c e SP data " ,
indivID = "ID" ,
outputDirectory = "output"

)

Figure 4.2: Code initialisation

Only this final setting in Figure 4.2, i.e. setting the individual ID, is a requirement without which
the code will not run. For any other settings, the code will use default values when not provided
by the user, as illustrated in Figure 4.6. These other settings include:

mixing: A boolean variable which needs to be set to TRUE when the model uses continuous
random coefficients, as discussed in Section 6.1 (default is set to FALSE).

nCores: An integer setting the number of cores used during estimation discussed, as discussed
in Section 6.4 (default is set to 1).

workInLogs: A boolean variable, which, when set to TRUE, means that the logs of probabilities
are used when processing probabilities inside apollo_probabilities. This can avoid numer-
ical issues with complex models and datasets where there are large numbers of observations
per individual. This is only really useful with repeated choice, and slows down estimation
(default is set to FALSE).

seed: An integer setting the seed used for any random number generation (default is 13).
HB: A boolean variable which needs to be set to TRUE for using Bayesian estimation, as
discussed in Section 8 (default is FALSE).

panelData: A boolean variable indicating whether the data is to be treated as panel data. This
is set automatically to TRUE if multiple observations are present per individual, and FALSE
otherwise. If a user sets this to FALSE in the presence of multiple observations per individual,
the data will be treated as cross-sectional.

noValidation A boolean variable, which, when set to TRUE, means that no validation checks
are performed (default is FALSE).

noDiagnostics A boolean variable, which, when set to TRUE, means that no model diagnostics
are reported. This setting is provided primarily to avoid excessively verbose output with

Chapter 4. General code structure and components: illustration for MNL 21

complex models using many components (cf. Section 7) but will be set to FALSE (default)
for most models by most users.

weights: The name of a variable in the database containing weights for each observation, which
can then be used in estimation if also using the function apollo_weighting (default is for
weights to be missing).

outputDirectory: The name of a directory to be used for reading input and writing output
to. This should be a subdirectory of the working directory, or an absolute path. By default,
the output directory is set to the working directory.

4.2 Reading and processing the data

Figure 4.3 illustrates the process of loading the data, in this case from a csv file, working with
only a subset of the data (in this case removing the RP observations) and creating additional
variables in the data (in this case a variable with the mean income in the data). In our example,
we read the data file from the working directory, which we had set to be the same as the directory
with the model file. Users may need to add the path of the file depending on their local setup
and file structure. If the data file contains multiple rows per individual, then these need to be
next to each (i.e. contiguous) in the data file.

Three additional points need to be mentioned here:

• Firstly, the code is not limited to using csv files, and R allows the user to read in tab
separated files too, for example2.

• Secondly, some applications may combine data from multiple files. The user can either
combine the data outside of R or do so inside R using appropriate merging functions, but
at the point of validating the user inputs (Section 4.4), all data needs to be combined in a
single R data.frame called database.

• Thirdly, any new variables created by the user, such as mean income in our case, need to
be created in the database object rather than the global environment, and this needs to
happen prior to validating the user inputs.

database = read . csv (" apollo_modeChoiceData . csv " , header=TRUE)

database = subset (database , database$SP==1)

database$mean_income = mean(database$income)

Figure 4.3: Loading data, selecting a subset and creating an additional variable

4.3 Model parameters

In this simple model, we estimate alternative specific constants (ASCs), mode specific travel time
coefficients, a cost and access time coefficient and dummy coded coefficients for the service quality

2The reader is referred to R Core Team (2017).

Chapter 4. General code structure and components: illustration for MNL 22

attribute. In addition, we interact the constants with gender, allow for differences in the time
and cost sensitivities for business travellers (generic across modes), and incorporate an income
elasticity on the cost sensitivity.

With the above, the utilities for the four modes in choice situation t for individual n are given
by:

Ucar,n,t = δcar

+ (βtt,car + βtt,business−shift · zbusiness,n) · xtt,car,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,car,n,t

+ εcar,n,t

Ubus,n,t = δbus + δbus,female−shift · zfemale,n
+ (βtt,bus + βtt,business−shift · zbusiness,n) · xtt,bus,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,bus,n,t

+ εbus,n,t

Uair,n,t = δair + δair,female−shift · zfemale,n
+ (βtt,air + βtt,business−shift · zbusiness,n) · xtt,air,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,air,n,t

+ βno frills · (xservice,air,n,t == 1) + βwifi · (xservice,air,n,t == 2) + βfood · (xservice,air,n,t == 3)

+ εair,n,t

Urail,n,t = δrail + δrail,female−shift · zfemale,n
+ (βtt,rail + βtt,business−shift · zbusiness,n) · xtt,rail,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,rail,n,t

+ βno frills · (xservice,rail,n,t == 1) + βwifi · (xservice,rail,n,t == 2) + βfood · (xservice,rail,n,t == 3)

+ εrail,n,t,

(4.2)

where all parameters are estimated except for δcar and βno frills, which are both fixed to a value
of zero.

In the code, the user needs to define the parameters and their starting values, and also indicate
whether any of the parameters are to be kept at their starting values. This process is illustrated
in Figure 4.4. We first create an R object of the named vector type, called apollo_beta, with the
name and starting value for each parameter, including any that are later on fixed to their starting
values. In our case, we keep two of the parameters, namely asc_car and b_no_frills, fixed to
their starting values by including their names in the character vector apollo_fixed, where this
vector is kept empty (apollo_fixed = c()) if all parameters are to be estimated. Parameters
included in apollo_fixed are kept at the value used in apollo_beta, which may not be zero.

Chapter 4. General code structure and components: illustration for MNL 23

apol lo_beta=c (asc_car = 0 ,
asc_bus = 0 ,
asc_air = 0 ,
a s c_ra i l = 0 ,
asc_bus_shift_female = 0 ,
asc_air_shi f t_female = 0 ,
asc_ra i l_sh i f t_female = 0 ,
b_tt_car = 0 ,
b_tt_bus = 0 ,
b_tt_air = 0 ,
b_tt_rai l = 0 ,
b_tt_shi ft_business = 0 ,
b_access = 0 ,
b_cost = 0 ,
b_cost_shi ft_business = 0 ,
cost_income_elast = 0 ,
b_no_fr i l l s = 0 ,
b_wifi = 0 ,
b_food = 0)

apo l l o_f ixed = c (" asc_car " ," b_no_fr i l l s ")

Figure 4.4: Setting names and starting values for model parameters, and fixing some parameters
to their starting values

For complex models especially, it can sometimes be beneficial to read in starting values from an
earlier model, albeit that users should be mindful that this can lead to problems with convergence
to the estimates of the old model. This process is made possible by the function apollo_readBeta,
which is called as:

apollo_beta = apollo_readBeta(apollo_beta,
apollo_fixed,
inputModelName,

overwriteFixed)

The function returns an updated version of apollo_beta. The first two arguments passed to the
function are already known to the reader, the remaining two are:

inputModelName: The name of a previously estimated model, given as a string.
overwriteFixed: A boolean variable indicating whether parameters that are not to be estim-
ated should have their starting values overwritten by the input file (set to FALSE by default).

To use apollo_readBeta, the outputs from the input model need to have been saved in the same
directory as the current model file. We illustrate the use of this function in Figure 4.5, where
we read in parameters from the earlier RP model (Apollo_example_1.r) which did not include
the socio-demographic effects or the quality of service attribute, thus meaning that only values
for the 9 estimated parameters were read in, with the fixed parameter asc_car kept to the value
from apollo_beta given the use of overwriteFixed=FALSE, where, with overwriteFixed=TRUE,
the value from the input file would also be used for fixed parameters.

Chapter 4. General code structure and components: illustration for MNL 24

> apollo_beta=apollo_readBeta(apollo_beta,apollo_fixed,"Apollo_example_1",overwriteFixed=FALSE)

Out o f the 19 parameters in apollo_beta , 9 were updated
with va lues from the input f i l e .

1 parameter in apol lo_beta was kept f i x ed at i t s s t a r t i n g
value ra the r than being updated from the input f i l e .

Figure 4.5: Using apollo_readBeta to load results from an earlier model as starting values

4.4 Validation and preparing user inputs

The final step in preparing the code and data for model estimation or application is to make a call
to apollo_validateInputs The function runs a number of checks and produces a consolidated
list of model inputs. It is called as:

apollo_inputs=apollo_validateInputs()

This function takes no arguments but looks in the global environment for the various inputs
required for a model. This always includes the control settings apollo_control, the model
parameters apollo_beta, the vector with names of fixed parameters apollo_fixed and finally
the data object database. If any of these objects are missing from the global environment, the
execution of apollo_validateInputs fails. The function also looks for a number of optional
objects, namely apollo_HB, which is used for Bayesian estimation (cf. Section 8), apollo_draws
and apollo_randCoeff, which are used for continuous random coefficients (cf. Section 6.1), and
apollo_lcPars, which is used for latent class (cf. Section 6.2).

Before returning the list of model inputs, apollo_validateInputs runs a number of valida-
tion tests on the apollo_control settings and the database. It then uses default values for any
missing settings, and, in the case of panel data, adds an extra column called apollo_sequence
which is a running index of observations for each individual in the data. Finally, the code
also checks for the presence of multiple rows per individual in the data and accordingly sets
apollo_control$panelData to TRUE or FALSE3. The running of apollo_validateInputs is
illustrated in Figure 4.6. The list that is returned, apollo_inputs, contains the validated versions
of the various objects mentioned above, e.g. database.
> apollo_inputs = apollo_validateInputs()
Severa l obs e rva t i on s per i nd i v i dua l detected based on the value o f ID . Se t t ing panelData in

apo l l o_contro l s e t to TRUE.
Al l checks on apo l l o_cont ro l completed .
Al l checks on database completed .

Figure 4.6: Running apollo_validateInputs

4.5 Likelihood component: the apollo_probabilities function

The core part of the code is contained in the apollo_probabilities function, where we show
this function for our simple MNL model in Figure 4.7. An important distinction arises between

3In R, elements of a list such as apollo_control can be referred to via apollo_control$panelData.

Chapter 4. General code structure and components: illustration for MNL 25

apollo_probabilities and other functions in Apollo. While the other functions we have en-
countered are part of the package, apollo_probabilities needs to be defined by the user as
it is specific to the model to be estimated. The function itself is never called by the user, but
is used for example by the function for model estimation apollo_estimate discussed below.
The apollo_probabilities function returns probabilities, where the specific format depends on
functionality, which takes a default value for model estimation, but other values apply for
example in prediction, as discussed in Section 9.6. The value used for functionality depends on
which function makes the call to apollo_probabilities and is controlled internally - the user
does not need to change this, except in debugging, as explained in Chapter 10.

This function takes three inputs, namely the vector of parameters apollo_beta, the list of
combined model inputs apollo_inputs, and the argument functionality, which takes a default
value for model estimation, but other values apply for example in prediction, as discussed in
Section 9.6. The value used depends on which function makes the call to apollo_probabilities.

In the following three subsections, we look at the individual components of the code shown in
Figure 4.7.

4.5.1 Initialisation

Any use of the apollo_probabilities function begins with a call to apollo_attach which
enables the user to then call individual elements within for example the database by name, e.g.
using female instead of database$female. This function is called as:

apollo_attach(apollo_beta,
apollo_inputs)

The function does not return an object as output and the user does not need to change the
arguments for this function. The call to this function is immediately followed by a command
instructing R to run the function apollo_detach once the code exits apollo_probabilities.
This ensures that this call is made even if there is an error that leads to a failure (and hence hard
exit) from apollo_probabilities. This call is made as:

on.exit(apollo_detach(apollo_beta,
apollo_inputs))

With the database now having been attached, all elements within it can be referred to it by name
inside apollo_probabilities and referring to database is no longer permitted.

We next initialise a list (a flexible R object) called P which will contain the probabilities for
the model, where this is a requirement for any type of model used with the code.

4.5.2 Model definition

With εcar,n,t, εbus,n,t, εair,n,t and εrail,n,t in Equation 4.2 being distributed identically and inde-
pendently (iid) across individuals and choice scenarios following a type I extreme value distri-

Chapter 4. General code structure and components: illustration for MNL 26

bution, we obtain an MNL mode (cf. Luce, 1959; McFadden, 1974) , with the probability for
alternative i in choice task t for person n given by:

Pi,n,t (β) =
zavail,i,n,t · eVi,n,t∑J
j=1 zavail,j,n,t · eVj,n,t

, (4.3)

where β is a vector combining all model parameters, Vj,n,t refers to the part of the utility functions
in Equation 4.2 that excludes the error term εj,n,t, and where zavail,j,n,t takes a value of 1 if
alternative j is available in choice set t for person n, and 0 otherwise.

In the central part of the apollo_probabilities function, the user defines the actual model,
where in our example, this is a simple MNL model. No limits on flexibility are imposed on the
user with the Apollo package. A number of prewritten functions for common models are made
available in the package, going beyond MNL, as discussed in Section 5. Additionally, the user can
define his/her own models, as discussed in Section 5.5. Finally, this part of the code can contain
either a single model, as shown here, or multiple individual model components, as discussed in
Section 7.

The apollo_mnl function is called via:

P[["model"]] = apollo_mnl(mnl_settings,
functionality)

The function returns probabilities for the model, where depending on functionality, this is
for the chosen alternative only or for all alternatives. The output of the function is saved in a
component of the list P where for single component models such as here, this element is called
P[["model"]]. The function takes as its core input a list called mnl_settings which has four
compulsory inputs and two optional inputs. We will now look at these in turn.

alternatives: A named vector containing the names of the alternatives as defined by the user,
and for each alternative, giving the value used in the dependent variable in the data. In our
case, these simply go from 1 to 4.

avail: A list containing one element per alternative, using the same names as in alternatives.
For each alternative, we define the availability either through a vector of values of the same
length as the number of observations (i.e. a column from the data) or by a scalar of 1 if an
alternative is always available. A user can also set avail=1 (or omit its use) which implies
that all of the alternatives are available for every choice observation in the data.

choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation. In our example, this column is simply called choice.

V: A list object containing one utility for each alternative, using the same names as in
alternatives, where any linear or non-linear specification is possible. The contents of V
are complicated and are thus generally defined prior to calling the function, as in Figure
4.7. In our case, we pre-compute the interactions with socio-demographic variables in the
lines preceding the definition of the actual utilities, creating for example the new parameter

Chapter 4. General code structure and components: illustration for MNL 27

b_tt_car_value. This helps keep the code organised, makes it easier to add additional in-
teractions and also avoids unnecessary calculations. The latter point can be understood by
noting that in our example, the impact of income and purpose on the cost coefficient is calcu-
lated just once and then used in each of the four utilities, rather than being calculated four
times.

rows: This is an optional argument which is missing by default. It allows the user to specify a
vector called rows of the same length as the number of rows in the data. This vector needs to
use logical statements to identify which rows in the data are to be used for this model. For
any observations in the data where the entry in rows is set to FALSE, the probability for the
model will be set to 1. This means that, for this model, this observation does not contribute
to the calculation of the likelihood and hence estimation of the model parameters. It is useful
for example in the case of hybrid choice models, a point we return to in Section 7. When
omitted from the call to apollo_mnl, all rows are used, as in our example in Figure 4.7.

componentName: This is an optional argument of the character type which allows the user to
specify a name of the given model component. This is then used in various places in diagnostic
tests and model outputs. If omitted, a default is used by Apollo, where this varies across model
types, using for example MNL in the case of apollo_mnl.

In the code example, we actually create the utilities V outside mnl_settings first just for ease
of coding, but they can similarly be created directly inside the list. What matters if using the
former approach is that they are then copied into a component called V inside mnl_settings.

4.5.3 Function output

The final component of the apollo_probabilities function prepares the output of the function.
This performs further processing of the P list, which needs to include an element called model,
where, in our example, this is the only element in P. The specific functions to be called in this
part of the code depend on the data and model, where once again, the actual inputs to these
functions are not to be changed by the user.

In our specific example, the only additional manipulation of the raw probabilities produced
by apollo_mnl is a call to apollo_panelProd which multiplies the probabilities across individual
choice observations for the same individual, thus recognising the repeated choice nature of our
data. This function is only to be used in the presence of multiple observations per individual.
When estimating a model, the code computes the probability for the chosen alternative, say j∗n,t
in choice task t for person n, i.e. Pj∗n,t , using Equation 4.3. The contribution by person n to the
likelihood function, with a given value for the vector of model parameters β, is then given by:

Ln (β) =

Tn∏
t=1

Pj∗n,t , (4.4)

Chapter 4. General code structure and components: illustration for MNL 28

where Tn is the number of separate choice situations for person n. This function is called as:

P = apollo_panelProd(P,

apollo_inputs,
functionality)

All arguments of this function have been described already. When called in model prediction (cf.
Section 9.6), the multiplication across choices is omitted, i.e. the function returns an unmodified
version of P, with one row per observation.

Independent of the model specification, the function apollo_probabilities always ends with
the same two commands. First is apollo_prepareProb which prepares the output of the function
depending on functionality, e.g. with different output for estimation and prediction. This is
called as:

P = apollo_prepareProb(P,

apollo_inputs,
functionality)

This is followed by

return(P)

which ensures that P is returned as the output of apollo_probabilities.
We earlier mentioned the possible use of weights by including the setting weights in

apollo_control. If the user wants to use weights, then they must also call the function
apollo_weighting prior to apollo_prepareProb. This is called as:

P = apollo_weighting(P,

apollo_inputs,
functionality)

Note that when weights are used, they are applied during estimation, prediction and any other
application of the model (calculation of the model null log-likelihood, conditionals, unconditionals,
etc.). If the user wants, for example, to estimate without weights but predict with them, then
we recommend setting the values of all weights to 1 during estimation, and to their real values
during forecasting.

4.6 Estimation

Now that we have defined our model, we can perform model estimation by calling the function
apollo_estimate and saving the output from it in an object called model. This function uses

Chapter 4. General code structure and components: illustration for MNL 29

the maxLik package (Henningsen and Toomet, 2011) for classical estimation, where Bayesian
estimation is discussed in Section 8. In its simplest form, this function is called via:

model = apollo_estimate(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs)

where we have already covered all four arguments. The function may also be called with an
additional argument, namely estimate_settings, i.e.:

model = apollo_estimate(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings)

The additional input estimate_settings is a list which contains a number of settings for es-
timation. None of these settings is compulsory and default settings will be used for any omitted
settings, or indeed all settings when calling apollo_estimate without the estimate_settings
argument. The possible settings to include in this list are:

estimationRoutine: A character object which can take the values BFGS (for the Broyden 1970
- Fletcher 1970 - Goldfarb 1970 - Shanno 1970 algorithm), BHHH (for the Berndt-Hall-Hall-
Hausman algorithm, Berndt et al. 1974 or NR (for the Newton-Raphson algorithm), where
the specific syntax is for example estimationRoutine="BFGS" (default is set to BFGS).

maxIterations: An integer setting a maximum on the number of iterations (default is set to
200).

writeIter: A boolean variable, which, when set to TRUE, means that the values of
parameters at each iteration are saved into a file in the working directory, saved as
modelName_iterations.csv where modelName is as defined in apollo_control. This allows
the user to monitor progress during estimation, which is useful especially for complex models.
The use of this feature is only possible when using BFGS (default is set to TRUE).

hessianRoutine: A character variable indicating what routine to use for calculating the fi-
nal Hessian. Possible values are numDeriv for the numDeriv package (Gilbert and Varadhan,
2016), maxLik for the same package as used in estimation, and none for no covariance matrix
calculation. We have generally found that numDeriv is more reliable than maxLik for com-
puting the covariance matrix, but its use may lead to issues with complex mixture models. If
numDeriv fails, the code reverts to using maxLik (default is set to numDeriv).

printLevel: A numeric variable which can take levels from 0 to 3 and controls the level of
detail printed out during estimation, with higher levels meaning more detail (default is set to
3).

Chapter 4. General code structure and components: illustration for MNL 30

constraints: A character vector defining constraints on the parameters to be applied during
estimation. This is only possible with BFGS, and several limitations apply. Only linear con-
straints are supported. Only >, ≥, and = constraints are allowed, and they cannot be mixed,
e.g. β1 ≥ 0 and β2 = β1 cannot be applied at the same time. Fixed parameters (those whose
value do not change throughout estimation) cannot be included in constraints. When writing
constraints, all parameter names must be on the left side of the expression and only numeric
values on the right. So, for example, if we want the following two constraints: β1 ≥ 1 and
β2 ≥ β1, then we wound make contraints = c("b_1>=0", "-b_1 + b_2>=0"). Constraints
can also be defined using matrix notation using the maxLik (Henningsen and Toomet, 2011)
coding approach.

scaling: A named vector of scalings to be applied to individual parameters during estimation.
This can help estimation if the scale of individual parameters at convergence is very differ-
ent. In classical estimation, the user can specify scales for individual model parameters. For
example, if the unscaled specification involves a component βk xk in the utility function, and
if the user wishes to apply a scale of sβk , the starting value will be automatically adjusted to
β∗k = 1

sβk
xk, the utility component will be adjusted to sβkβ

∗
k xk and the maximum likelihood

estimation will optimise the value of β∗k. The final model estimates will be translated to the
original scale, i.e. returning estimates for βk4. The aim of this process is to have the paramet-
ers that are actually used in model estimation, i.e. β∗k, to be of a similar scale. An example
of this is given for the MDCNEV model in Section 5.4.2. For Bayesian estimation, the scales
are applied to the posterior parameter chains. Parameters included in apollo_fixed should
not be included in scaling.

numDeriv_settings: A list of optional settings to be passed on to numDeriv when this is used
for the Hessian (cf. Gilbert and Varadhan, 2016).

bootstrapSE: A numeric variable indicating the number of bootstrap samples to calculate
standard errors. The default is 0, meaning no bootstrap standard errors will be calculated.
The number must be zero or a positive integer.

bootstrapSeed: A numeric variable indicating the seed for the bootstrap sampling. The de-
fault is 24. If changed, it must be a positive integer. This value is only used if bootstrapSE >
0. In general, there is no need to change this value. If the user wants to add new repetitions
to a completed or interrupted estimation with bootstrap standard errors, the draws used will
automatically be different.

silent: A boolean variable, which, when set to TRUE, means that no information is printed
to the screen during estimation (default is set to FALSE).

Figure 4.8 illustrates what happens when running apollo_estimate on our simple MNL model.
The code first checks the model specification used inside apollo_probabilities and reports
some basic diagnostics. The validation and diagnostic steps are skipped if the user has set a value
of TRUE for noValidation or noDiagnostics, respectively, in apollo_control. For MNL, the

4When using scaling in Bayesian estimation in Apollo, not all estimates are returned to their original scale after
estimation. Indeed, the scaling is applied to the parameter chains directly, and producing scaled values for the
underlying Normals is not convenient. We thus report the scaled outputs only for the non-random parameters, the
random parameters after transformation to the actual distributions used, and the posterior means.

Chapter 4. General code structure and components: illustration for MNL 31

checks include for example ensuring that no unavailable alternatives are chosen. The code also
checks if any parameters are included in apollo_beta that do not influence the calculation of
the model likelihood, or if the probabilities of the model are zero at the starting values. This is
followed by the main estimation process and finally the calculation of the Hessian. Prior to that
step, which can take a long time in complex models (and may fail), the code also prints out the
final estimates.

We can see from Figure 4.8 that the estimation uses minimisation of the negative of the
log-likelihood, hence the positive values, which is of course equivalent to maximisation of the
log-likelihood itself.

Model estimation creates an object of the model type. The contents of this depend on the
specific type of model used, as well as on the estimation routine. Possible contents of this are
shown in Table D.2 in Appendix D, and described in more detail in Appendix E.

Model estimation is the most likely step during which failures are encountered when working
with the Apollo package. These could be either caused by errors in using the R syntax, resulting
in generic R error messages, or errors made in the use of the various Apollo functions, leading
to more specific error or warning messages. Not all warnings will be terminal and the code will
continue to run and report warnings after completion. It is in this case entirely possible that
the estimation has reached an acceptable solution with the warning messages for example being
a result of the estimation process trying parameter values that lead to numeric issues in some
iterations.

If a user runs the entire script contained in a model file including any post-estimation processes
in one go, then errors during estimation will cause further problems in the steps that follow, but
the reporting of those problems will likely become less intuitive further down the line. The user
should in that case return to the first error message obtained and identify the cause of this and
remedy it in the code. In general, running the code section by section is advisable to avoid this
issue as far as possible.

The outcomes of model estimation are saved in a list called model, which contains amongst
other things the estimates (model$estimates) and the classical and robust covariance matrices
(model$varcov and model$robvarcov). The robust covariance matrix is computed using the
‘sandwich’ estimator (cf. Huber, 1967), which is defined as:

S = (−H)−1B (−H)−1 (4.5)

where H is the Hessian matrix, i.e. the matrix of second derivatives of the log likelihood function
with respect to the model parameters to be estimated, and B is the Berndt-Hall-Hall-Hausman
(BHHH) matrix (Berndt et al., 1974), defined as the matrix which has in cell jk the value

Bj,k =
∑
n

Lj,nLkn (4.6)

where Lj,n is the first derivative with respect to model parameter j of the contribution to the
log-likelihood function from observation n.

In purely cross-sectional estimation, the sandwich estimator corrects the standard errors for
general mis-specification of the model. In a panel specification, it can additionally corrects the

Chapter 4. General code structure and components: illustration for MNL 32

standard errors to accommodate the panel nature. It has long been recognised (see e.g. Louviere
and Woodworth, 1983) that individual choices for the same respondent are not independent, and
that the information content of N respondents each giving T responses is usually considerably
less than that of NT respondents each giving a single response. As a result, the estimates of
accuracy given by cross-sectional modelling are incorrect, i.e. such models are likely to produce
biased standard errors, with the expectation being a downwards bias. When there is no explicit
retention of information between observations, H will be identical whether the data is considered
as a panel or not. However, although the first derivative components used in calculating B are the
same for the panel and the non-panel cases, Bj =

∑
n,t Lj,n,t =

∑
n (
∑

t Lj,n,t), the calculation
procedure for S is different for the panel case and the non-panel cases, because the specification
of an “observation" is different. Specifically, if we treat the data as being panel observations, we
make the calculation:

Bj,k =
∑
n

Lj,nLk,n =
∑
n

(∑
t

Lj,n,t

)(∑
t

Lk,n,t

)
(4.7)

whereas, if we treat panel data as being independent, the calculation is:

Bj,k =
∑
n

∑
t

Lj,n,tLk,n,t (4.8)

which is clearly different and will typically give a matrix with larger components on the diagonal,
so that inverting the matrix will (incorrectly) indicate smaller estimation errors.

4.7 Reporting and saving results

Now that after completing model estimation, the user can output the results to the console
(screen) and/or a set of different output files. Two separate functions are used for this, namely
apollo_modelOutput for output to the screen, and apollo_saveOutput for output to files. These
two commands do not return an object as output, i.e. are called without an object to assign
the output to. In their default versions, these functions are called with only the model object as
input, i.e.:

apollo_modelOutput(model)

and

apollo_saveOutput(model)

In addition, it is possible to call both functions with an additional argument that is a list of
settings, i.e.

apollo_modelOutput(model,

modelOutput_settings)

Chapter 4. General code structure and components: illustration for MNL 33

and

apollo_saveOutput(model,

saveOutput_settings)

The two lists modelOutput_settings and saveOutput_settings have a number of arguments
that are all optional, namely:

printFixed: If set to TRUE, the code will print fixed parameters as well as estimated para-
meters (default is TRUE for apollo_modelOutput and apollo_saveOutput).

printClassical: If set to TRUE, the code will output classical standard errors as well as
robust standard errors, computed using the sandwich estimator. This setting then also af-
fects the reporting of t-ratios, p-values and covariance/correlation matrices. If the compu-
tation of classical standard errors fails for some parameters, the user is alerted to this even
if classical standard errors are not reported (default is TRUE for apollo_modelOutput and
apollo_saveOutput).

printPVal: If set to 0, p-values are not reported. If set to 1, then one-sided p-values are
reported. If set to 2, then two-sided p-values are reported (default value is 0 for both
apollo_modelOutput and apollo_saveOutput).

printT1: if set to TRUE, t-ratios against 1 are reported in addition to t-ratios against 0,
where this is useful for Nested Logit models and for multipliers (default is FALSE for
apollo_modelOutput and apollo_saveOutput).

printDataReport: If set to TRUE, a summary of each model’s dependant variable is reported
(default is TRUE for apollo_modelOutput and apollo_saveOutput).

printModelStructure: If set to TRUE, a summary of the model structure is reported. Only
some models report their model structure: NL, CNL and MDCNEV (default is TRUE for
apollo_modelOutput and apollo_saveOutput).

printCovar: If set to TRUE, the covariance matrix of parameters is reported (default is FALSE
for apollo_modelOutput and TRUE for apollo_saveOutput).

printCorr: if set to TRUE, the correlation matrix of parameters is reported (default is FALSE
for apollo_modelOutput and TRUE for apollo_saveOutput).

printOutliers: If set to TRUE, the 20 worst outliers in terms of lowest average probabilities
for the chosen alternative are reported (default is FALSE for apollo_modelOutput and TRUE
for apollo_saveOutput). Alternatively, a scalar can be provide to use instead of 20 to change
the number of outliers reported.

printChange: If set to TRUE, the changes from the starting values are reported for
the estimated parameters (default is FALSE for apollo_modelOutput and TRUE for
apollo_saveOutput).

printFunctions: If set to TRUE, a copy of apollo_probabilities, apollo_randomCoeff,
apollo_lcPars, apollo_control, and estimate_settings$scaling, are printed, as well
as a list of the methods attempted to calculate the Hessian matrix (default is FALSE for
apollo_modelOutput and TRUE for apollo_saveOutput)

The main outputs controlled by the above settings will determine what apollo_saveOutput writes

Chapter 4. General code structure and components: illustration for MNL 34

into the main output file, which will be called modelName_output.txt where modelName is as
defined in apollo_control. When saving outputs to files, saveOutput_settings list has five
additional possible settings, namely:

saveEst: If set to TRUE, the code will save a csv file with the parameter estimates, standard
errors and t-ratios, saved as modelName_estimates.csv (default is TRUE).

saveCov: If set to TRUE, a csv file will be produced with the covariance matrix, saved as
modelName_robcovar.csv, where, if printClassical==TRUE, a separate file will be produced
with the classical covariance matrix, saved as modelName_covar.csv (default is TRUE).

saveCorr: If set to TRUE, a csv file will be produced with the correlation matrix, saved as
modelName_robcorr.csv, where, if printClassical==TRUE, a separate file will be produced
with the classical correlation matrix, saved as modelName_corr.csv (default is TRUE).

saveModelObject: If set to TRUE, an output file of the rds (an R format) will be produced
containing the model object, saved as modelName_model.rds (default is TRUE).

writeF12: If set to TRUE, the code will produce an F12 file, which is an output format used
by the ALogit software (ALogit, 2016)5, saved as modelName.f12 (default is FALSE).

It is worth noting that if a user has previously run apollo_saveOutput from the same model, the
old output files will be renamed rather than overwritten.

An example of the on screen output is shown in Figure 4.9. For apollo_saveOutput, a text
file containing output using the above settings will be produced, using a filename corresponding
to apollo_control$modelName. The default settings imply a more verbose output for the log
file as opposed to the on screen output, in addition to files with estimates, covariance matrices
etc, unless instructed not to. The majority of the output in Figure 4.9 is self-explanatory. The
output reports starting and final log-likelihood, and where appropriate (model dependent), also
the log-likelihood at zero values for all parameters. A number of goodness-of-fit statistics are
included. For discrete choice models, Apollo reports the ρ2 measure, given as:

ρ2 = 1−
LL
(
θ̂
)

LL (0)
(4.9)

as well as the adjusted ρ2, with:

ρ̄2 = 1−
LL
(
θ̂
)
−K

LL (0)
, (4.10)

where K is the number of estimated parameters. In addition, for all models, Apollo reports the
Akaike Information Criterion (AIC), given by:

AIC = −2LL
(
θ̂
)

+ 2K, (4.11)

5This is file containing all key model outputs. It is also produced by Biogeme and ALogit provides a shell
to compare the results across models using these files, which can come from different estimation packages. See
www.alogit.com

Chapter 4. General code structure and components: illustration for MNL 35

with K being number of estimated parameters, and the Bayesian Information Criterion (BIC),
given by:

BIC = −2LL
(
θ̂
)

+K ln (N) , (4.12)

where N is the number of observations in the data.
In addition, Apollo reports the number of estimated parameters, the estimation time (divided

into subcomponents) and iterations taken, as well as the eigenvalue of the Hessian that is closest
to zero. Small values can indicate convergence issues. A special warning message is displayed if
some of the eigenvalues are positive.

Chapter 4. General code structure and components: illustration for MNL 36

apollo_attach
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io−demographics
asc_bus_value = asc_bus + asc_bus_shift_female ∗ female
asc_air_value = asc_air + asc_air_shi f t_female ∗ female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female ∗ female
b_tt_car_value = b_tt_car + b_tt_shi ft_business ∗ bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business ∗ bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business ∗ bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business ∗ bus ine s s
b_cost_value = (b_cost + b_cost_shi ft_business ∗ bus ine s s) ∗ (income / mean_income) ^

↪→ cost_income_elast

Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ()
V[[' car ']] = asc_car + b_tt_car_value ∗ time_car + b_cost_value ∗

↪→ cost_car
V[[' bus ']] = asc_bus_value + b_tt_bus_value ∗ time_bus + b_access ∗ access_bus + b_cost_value ∗

↪→ cost_bus
V[[' a i r ']] = asc_air_value + b_tt_air_value ∗ time_air + b_access ∗ acce s s_a i r + b_cost_value ∗

↪→ cost_ai r + b_no_fr i l l s ∗ (s e r v i c e_a i r == 1) + b_wifi ∗ (s e r v i c e_a i r == 2) + b_food ∗ (
↪→ s e r v i c e_a i r == 3)

V[[' r a i l ']] = asc_rai l_value + b_tt_rail_value ∗ t ime_ra i l + b_access ∗ a c c e s s_ra i l + b_cost_value ∗
↪→ c o s t_ra i l + b_no_fr i l l s ∗ (s e r v i c e_ r a i l == 1) + b_wifi ∗ (s e r v i c e_ r a i l == 2) + b_food ∗ (
↪→ s e r v i c e_ r a i l == 3)

Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
V = V

)

Compute p r o b a b i l i t i e s us ing MNL model
P [[" model "]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 4.7: The apollo_probabilities function: example for MNL model

Chapter 4. General code structure and components: illustration for MNL 37

model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Test ing l i k e l i h o o d func t i on . . .

Overview o f cho i c e s f o r MNL model component :
car bus a i r r a i l

Times a va i l a b l e 5446.00 6314.00 5264.00 6118.00
Times chosen 1946.00 358.00 1522.00 3174.00
Percentage chosen o v e r a l l 27 .80 5 .11 21 .74 45 .34
Percentage chosen when ava i l a b l e 35 .73 5 .67 28 .91 51 .88

Pre−proc e s s i ng l i k e l i h o o d func t i on . . .

Test ing i n f l u e n c e o f parameters
S ta r t i ng main es t imat ion
I n i t i a l f unc t i on value : −6359.334
I n i t i a l g rad i ent value :

asc_bus asc_air a s c_ra i l
−503.34620 12.28335 854.39711

asc_bus_shift_female asc_air_shi f t_female asc_ra i l_sh i f t_female
−230.62587 26.58006 432.55875

b_tt_car b_tt_bus b_tt_air
−124003.22221 −185262.48861 2945.11909

b_tt_rai l b_tt_shi ft_business b_access
127028.10185 −159805.02716 5306.38628

b_cost b_cost_shi ft_business cost_income_elast
9748.82869 22058.72104 −309.78035

b_wifi b_food
630.32976 233.20089

i n i t i a l va lue 6359.334287
i t e r 2 value 5983.261941
. . .
i t e r 25 value 4830.944739
f i n a l value 4830.944739
converged
Estimated parameters :

Estimate
asc_car 0.000000
asc_bus 0.286717
asc_air −0.903270
a s c_ra i l −2.092578
asc_bus_shift_female 0.340222
asc_air_shi f t_female 0.268170
asc_ra i l_sh i f t_female 0.189612
b_tt_car −0.013107
b_tt_bus −0.021266
b_tt_air −0.016578
b_tt_rai l −0.007051
b_tt_shi ft_business −0.006234
b_access −0.021152
b_cost −0.076187
b_cost_shi ft_business 0 .033379
cost_income_elast −0.613842
b_no_fr i l l s 0 .000000
b_wifi 1 .026703
b_food 0.422063

Computing covar iance matrix us ing an a l y t i c a l g rad i ent .
0% 2 5% 5 0% 7 5% 1 0 0%

Negative d e f i n i t e Hess ian with maximum e igenva lue : −2.818775
Computing s co r e matrix . . .
Ca l cu la t ing LL(0) . . .
Ca l cu la t ing LL o f each model component . . .

Figure 4.8: Running apollo_estimate on MNL model

Chapter 4. General code structure and components: illustration for MNL 38

apollo_modelOutput(model)

Model run us ing Apol lo f o r R, ve r s i on 0 . 2 . 4 on Darwin by stephane . hess
www. Apol loChoiceModel l ing . com

Model name : Apollo_example_3
Model d e s c r i p t i o n : MNL model with soc io−demographics on mode cho i c e SP data
Model run at : 2021−02−04 15 : 55 : 08
Estimation method : b fgs
Model d i a gno s i s : s u c c e s s f u l convergence
Number o f i n d i v i du a l s : 500
Number o f rows in database : 7000
Number o f modelled outcomes : 7000

Number o f co r e s used : 1
Model without mixing

LL(s t a r t) : −6359.334
LL(0) : −8196.021
LL(f i n a l) : −4830.945
Rho−square (0) : 0 .4106
Adj .Rho−square (0) : 0 .4085
AIC : 9695.89
BIC : 9812.4

Estimated parameters : 17
Time taken (hh :mm: s s) : 0 0 : 0 0 : 1 0 . 4 9

pre−e s t imat ion : 0 0 : 0 0 : 2 . 7 3
e s t imat ion : 0 0 : 0 0 : 2 . 6 3
post−e s t imat ion : 0 0 : 0 0 : 5 . 1 3

I t e r a t i o n s : 27
Min abs e i genva lue o f Hess ian : 2 .818775

Estimates :
Estimate s . e . t . ra t . (0) Rob . s . e . Rob . t . ra t . (0)

asc_car 0.000000 NA NA NA NA
asc_bus 0.286717 0.582949 0.4918 0.549508 0.5218
asc_air −0.903270 0.373537 −2.4182 0.361569 −2.4982
a s c_ra i l −2.092578 0.353359 −5.9220 0.351090 −5.9602
asc_bus_shift_female 0.340222 0.132783 2.5622 0.145285 2.3418
asc_air_shi f t_female 0.268170 0.091506 2.9306 0.095283 2.8145
asc_ra i l_sh i f t_female 0.189612 0.073759 2.5707 0.078168 2.4257
b_tt_car −0.013107 7.3440 e−04 −17.8471 7.6775 e−04 −17.0718
b_tt_bus −0.021266 0.001598 −13.3111 0.001518 −14.0096
b_tt_air −0.016578 0.002774 −5.9771 0.002671 −6.2074
b_tt_rai l −0.007051 0.001811 −3.8930 0.001765 −3.9960
b_tt_shi ft_business −0.006234 6.0073 e−04 −10.3773 5.9078 e−04 −10.5522
b_access −0.021152 0.002865 −7.3841 0.002706 −7.8155
b_cost −0.076187 0.002097 −36.3300 0.002095 −36.3619
b_cost_shi ft_business 0 .033379 0.002739 12.1844 0.002572 12.9783
cost_income_elast −0.613842 0.030094 −20.3976 0.030606 −20.0566
b_no_fr i l l s 0 .000000 NA NA NA NA
b_wifi 1 .026703 0.056142 18.2876 0.057815 17.7586
b_food 0.422063 0.055027 7.6702 0.056464 7.4749

Figure 4.9: On screen output obtained using apollo_modelOutput for MNL model

Chapter 5

Other model components

In Chapter 4, we gave a detailed overview of the approach to specifying and estimating models in
the Apollo package. In this section, we look at the use of other model components, thus replacing
the part of the code discussed in Section 4.5.2. We discuss ready-to-use functions for a number
of commonly used models. We cover structures belonging the family of random utility models as
well as those that do not. We then look at models that are not for discrete choice, looking at
ordered choice data as well as discrete-continuous data. We finally explain how a user can add
his/her own model functions.

5.1 Other RUM-consistent discrete choice models

5.1.1 Nested Logit

For the Nested Logit (NL) model (Daly and Zachary, 1978; McFadden, 1978; Williams, 1977),
we adopt the efficient implementation of Daly (1987) but adapt it to the more commonly used
version which divides the utilities by the nesting parameter in the within nest probabilities (see
the discussions in Train 2009, chapter 4, and Koppelman and Wen 1998). Let us assume we have
a nesting structure with three levels and that alternative i falls into nest om on the lowest level
of nesting, which itself is a member of nest m on upper level of nesting, with m being in the root
nest. Using λ for nesting parameters, we would then have that 0 < λom ≤ λm ≤ λr ≤ 1. The
probability1 of person n choosing alternative i in choice situation t is then given by:

Pi,n,t = Pm,n,t P(om|m),n,t P(i|om),n,t (5.1)

1For the sake of simplicity of notation, we assume here that all alternatives are available in every choice situation
for every person. In the code, we of course allow for departures from this assumption.

39

Chapter 5. Other model components 40

where

P(i|om),n,t =
e
(
Vi,n,t
λom

)∑
j∈om e

(
Vj,n,t
λom

)
(5.2)

P(om|m),n,t =
e(
λom
λm

Iom,n,t)∑Mm
lm=1 e

(
λlm
λm

Ilm,n,t)
(5.3)

Pm,n,t =
e(
λm
λr

Im,n,t)∑M
m=1 e

(
λl
λr
Il,n,t)

(5.4)

with

Im,n,t = log

Mm∑
lm=1

e(
λlm
λm

Ilm,n,t) (5.5)

Iom,n,t = log
∑
j∈om

e
(
Vj,n,t
λom

)
, (5.6)

where 0 < λom ≤ λm ≤ λr ≤ 1. For normalisation, we set λr = 1, i.e. using normalisation at the
top.

In the efficient implementation of Daly (1987), we then work in logs, where we define a set of
elementary alternatives E and a tree function t. The tree function gives us a set of composite
nodes C = (t(j), t(t(j)), . . .∀j ∈ E). For each elementary alternative, there is a single path up
to the root r, where, for alternative i, this is given by: A(i, r, t) = (i, t(i), t(t(i)) . . . r). We then
have that:

log(Pi,n,t) =
∑

a∈A(j,r,t)

1

λt(a)

(
Va,n,t − ˜Vt(a),n,t) . (5.7)

where λt(a) is the nesting parameter for the nest that contains a, and for any non-elementary
elements a, we have:

Ṽa,n,t = λa log
∑
l∈a

exp(
Vl,n,t
λa

) (5.8)

where l ∈ a gives all the elements contained in a, which can be a mixture of nests and elementary
alternatives. For normalisation, we set λr = 1, and for consistency with utility maximisation, we
then have that 0 < λa ≤ 1, ∀a and λa ≤ λt(a), i.e. the λ terms in a given chain A(j, r, t) decrease
as we go from the root down the tree.

In the actual user syntax, we adopt an approach inspired by ALogit2 (ALogit, 2016) where a
user needs to specify a chain going from the root to each of the elementary alternatives. To illus-
trate this, we look at an example on the data described in Section 3.1, where we implement a three-
level NL (Apollo_example_5.r). A simpler two-level model is available in Apollo_example_4.r.

2www.alogit.com

Chapter 5. Other model components 41

Spec i f y ne s t s f o r NL model
n lNest s = l i s t (root=1, PT=lambda_PT , fastPT=lambda_fastPT)

Spec i f y t r e e s t ru c tu r e f o r NL model
n lS t ruc tu r e= l i s t ()
n lS t ruc tu r e [[" root "]] = c (" car " ,"PT")
n lS t ruc tu r e [["PT"]] = c (" bus " ," fastPT ")
n lS t ruc tu r e [[" fastPT "]] = c (" a i r " ," r a i l ")

Def ine s e t t i n g s f o r NL model
n l_se t t ing s <− l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
V = V,
n lNest s = nlNests ,
n lS t ruc tu r e = n lS t ruc tu r e

)

Compute p r o b a b i l i t i e s us ing NL model
P [[" model "]] = apol lo_nl (n l_set t ings , f u n c t i o n a l i t y)

Figure 5.1: Nested Logit implementation (extract)

Note that Apollo does not impose any constraints on the nesting parameters, and it is the user’s
role to ensure that the starting values and final estimates are consistent with theory.

In the first level of the tree, alternatives are divided into public transport (PT) alternatives and
car, while the PT alternatives are then further split into a nest containing rail and air (fastPT),
where bus is on its own. To estimate this model, we specify two additional parameters compared
to the MNL model in Section 4.5.2 in the apollo_beta vector, say lambda_PT and lambda_fastPT.

Just like apollo_mnl, the apollo_nl function is called as follows:

P[["model"]] = apollo_nl(nl_settings,
functionality)

The list nl_settings contains all the same elements as for MNL, i.e. the compulsory inputs
alternatives, avail, choiceVar, V and the optional inputs rows and componentName. For
further details on these, the reader is referred back to Section 4.5.2. For Nested Logit, the list
nl_settings needs to contain two additional arguments, namely:

nlNests: A named vector containing the names of the nests and the associated structural
parameters λ. For each λ, we give the name of the associated parameter. This list needs to
include the root, which is the only nest for which the choice of name is not free for the user
to determine.

nlStructure: A list containing one element per nest, where each element is a vector with
the names of the contents of that nest, which can itself be a mix of nests and elementary
alternatives.

In our example, as illustrated in Figure 5.1 (where we do not show the definition of alternatives,
availabilities, choices and utilities, as these remain the same as in the MNL model in Section 4.5.2),
we have three nests, where this includes the root. The order of elements is of no importance as
they are identified by the nest names, yet, for consistency, using the same order as in the model
structure which follows is advisable. For each nest, we give the nesting parameter, using the

Chapter 5. Other model components 42

Nest : root (1)
|−−−−−−−Al t e rna t i v e : car
'−Nest : PT (0 . 6952)

|−−−−Al t e rna t i v e : bus
'−Nest : fastPT (0 . 5861)

|−Al t e rna t i v e : a i r
'−Al t e rna t i v e : r a i l

Figure 5.2: Nested Logit tree structure after estimation

parameter names previously defined in apollo_beta. The final step in the definition of the NL
model is a call to apollo_nl with the appropriate inputs. Extensive checks are performed by this
function, notably ensuring that for each alternative, there is exactly one chain from the root to
the bottom of the tree.

After estimation, the model reports estimates for all parameters, as for any model, but in ad-
dition prints out (except if apollo_control$noDiagnostics==FALSE) the resulting tree structure
with the estimated nesting parameters in brackets (and this is repeated with apollo_modelOutput
and apollo_saveOutput if printDiagnostics is set to TRUE in their respective settings). In the
case of our example, shown in Figure 5.2, we see that, as intended, there is a direct link from the
root to the car alternative, while all other alternatives are nested in a public transport nest, with
a further layer of nesting for rail and air within that nest. The nesting parameters also follow the
required decreasing trend when going from the root down the tree.

5.1.2 Cross-nested Logit

For our implementation of the Cross-nested Logit (CNL) model (Vovsha, 1997), we follow the
“Generalised Nested Logit" (GNL) model of Wen and Koppelman (2001), with all nesting para-
meters freely estimated, and the constraint on the allocation parameters (showing the membership
of alternative j in nestm) that 0 ≤ αj,m ≤ 1, ∀j,m and

∑
j αj,m = 1, ∀m. Only two-level versions

of CNL are available through the apollo_cnl function, i.e. one layer of nests below the root, with
the membership of a non-root nest being made up entirely of elementary choice alternatives.

In our implementation, each alternative needs to fall into at least one nest on the second level
of the tree, where this can be a single alternative nest. We then have M nests, S1 to SM , where
αj,m represents allocation of alternative j to nest Sm. We have that 0 ≤ αj,m ≤ 1 ∀ j,m and∑M

m=1 αj,m = 1 ∀ j. The probabilities are then given by a sum over nests:

Pi,n,t =
M∑
m=1

PSm,n,t P(i|Sm),n,t (5.9)

Chapter 5. Other model components 43

where

PSm,n,t =

(∑
j∈Sm

(
αj,me

Vj,n,t
) 1
λm

)λm
∑M

l=1

(∑
j∈Sl

(
αj,leVj,n,t

) 1
λl

)λl (5.10)

P(i|Sm),n,t =

(
αi,me

Vi,n,t
) 1
λm∑

j∈Sm
(
αj,meVj,n,t

) 1
λm

(5.11)

Just like apollo_mnl and apollo_nl, the apollo_nl function is called as follows:

P[["model"]] = apollo_cnl(cnl_settings,
functionality)

The list cnl_settings contains all the same elements as for MNL, i.e. the compulsory inputs
alternatives, avail, choiceVar, V and the optional inputs rows and componentName. For
further details on these, the reader is referred back to Section 4.5.2. For Cross-nested Logit, the
list cnl_settings needs to contain two additional arguments, namely:

cnlNests: A named vector containing the names of the nests and the associated structural
parameters λ. For each λ, we give the name of the associated parameter. Unlike in apollo_nl,
the root is not included for apollo_cnl as only two-level structures are used.

cnlStructure: A matrix showing the allocation of alternatives to nests, with one row per nest
and one column per alternative, using the same ordering as in alternatives and cnlNests.

For our implementation example on the simple mode choice data, we define a structure where air
is nested together with rail (fast PT), and bus is nested together with rail (ground-based PT), but
there is no joint nest membership for bus and air. Finally, car is nested on its own. This means that
the only alternative for which allocation parameters need to be estimated is the rail alternative,
where we have that αrail,fastPT + αrail,groundPT = 1, with both αrail,fastPT and αrail,groundPT
being constrained to be between 0 and 1. Imposing constraints directly on the estimation routine
is inefficient and can affect the standard error calculations. We instead recommend the use of
a logistic transform, where, with alternative j having an estimated allocation parameter for M
different nests, we have that, for nest m:

αj,m =
e(α0,j,m)∑M
l=1 e

(α0,j,l)
, (5.12)

where a normalisation is required, for example fixing α0,j,1 = 0.
Like in the NL model, we define a vector of names for the nests, cnlNests, which defines

the names of the nests and the associated structural parameters λ, using the parameter names
previously defined in apollo_beta.

In our example (Apollo_example_6.r), as illustrated in Figure 5.3 (where we do not show
the definition of alternatives, availabilities, choices and utilities, as these remain the same as in
the MNL and NL models), we have three nests, one for air and rail (fastPT), one for bus and

Chapter 5. Other model components 44

rail (groundPT), and one for car, which is nested on its own. The nesting parameter for the car
nest is set to 1 given this is a single alternative nest. Our CNL implementation is limited to a
two-level structure, and all elementary alternatives need to belong to at least one nest below the
root, even if these are single alternative nests. This means that all nests defined by the user are
automatically positioned below the root and the root is thus not included in the definition of the
nest or tree structure given by the user. Note that, as for Nested Logit, Apollo does not impose
any constraints on the nesting parameters, and it is the user’s role to ensure that the starting
values and final estimates are consistent with theory. However, Apollo will not estimate a model
where, at the starting values, the allocation parameters for a single alternative sum to a value
different from 1.
Spec i f y ne s t s f o r CNL model
cn lNes t s = l i s t (fastPT=lambda_fastPT , groundPT=lambda_groundPT , car=1)

Spec i f y nest a l l o c a t i o n parameters f o r a l t e r n a t i v e s inc luded in mul t ip l e ne s t s
alpha_rail_fastPT = exp (alpha0_rail_fastPT) /(exp (alpha0_rail_fastPT) + exp (alpha0_rail_groundPT))
alpha_rail_groundPT = 1 − alpha_rail_fastPT

Spec i f y t r e e s t ruc ture , showing membership in ne s t s (one row per nest , one column per a l t e r n a t i v e)
cn lS t ruc tu r e = matrix (0 , nrow=length (cn lNest s) , nco l=length (V))
cn lS t ruc tu r e [1 ,] = c (0 , 0 , 1 , alpha_rail_fastPT) # fastPT
cn lS t ruc tu r e [2 ,] = c (0 , 1 , 0 , alpha_rail_groundPT) # groundPT
cn lS t ruc tu r e [3 ,] = c (1 , 0 , 0 , 0) # car

Def ine s e t t i n g s f o r CNL model
cn l_se t t i ng s <− l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
V = V,
cn lNest s = cnlNests ,
cn lS t ruc tu r e = cn lS t ruc tu r e

)

Compute p r o b a b i l i t i e s us ing CNL model
P [[" model "]] = apol lo_cnl (cn l_set t ings , f u n c t i o n a l i t y)

Figure 5.3: Cross-nested Logit implementation (extract)

For the allocation or nest membership parameters, car and bus both fall into one nest ex-
actly, so they have αj,m = 1 for the specific nest m they fall into and the remaining ones are

set to zero. For rail, we define αrail,fastPT = e(α0,rail,fastPT)

e(α0,rail,fastPT)+e(α0,rail,groundPT)
, and obviously

αrail,groundPT = 1 − αrail,fastPT , while we use the normalisation that α0,rail,groundPT = 0, by in-
cluding the parameters alpha0_rail_fastP in apollo_fixed. The crucial part of the definition of
a CNL model is again the actual model structure, which in our code is again called cnlStructure,
where this is now made up of a matrix with one row per nest, and one alternative per column,
where the entry in a given cell corresponds to the appropriate allocation parameter. The or-
der of rows and columns needs to be consisted with the order in cnlNests and alternatives,
respectively.

In the model output, the code reports the resulting tree structure with the estimated allocation
and nesting parameters. In the case of our example, shown in Figure 5.4, we see that, as intended,
car, bus and air all belong to one nest only, while the estimation has shown that the split for
rail is almost 50-50, with the λ parameter being smaller in the fastPT nest. In reporting the
allocation parameters, the code uses the final values used inside cnlStructure, i.e. after the
logistic transform in our example.

Chapter 5. Other model components 45

Structure f o r CNL model component :
car (alpha) bus (alpha) a i r (alpha) r a i l (alpha) lambda

fastPT nest 0 .000 0 .000 1 .000 0.4929 0.4012
groundPT nest 0 .000 1 .000 0 .000 0.5071 0.5285
car nest 1 .000 0 .000 0 .000 0.0000 1.0000

Figure 5.4: Cross-nested Logit structure after estimation

5.2 Non-RUM decision rules for discrete choice

In this section, we present the use of two alternatives to RUM in Apollo, namely random regret
minimisation (RRM) and Decision Field Theory (DFT).

5.2.1 Random regret minimisation (RRM)

The fundamental assumption in regret theory is that what matters is not only the realised outcome
but also on what could have been obtained by selecting a different course of action. This means
that the model incorporates anticipated feelings of regret that would be experienced once ex-post
decision outcomes are revealed to be “unfavourable”. The value of an alternative can thus only
be assigned following a cross-wise evaluation of alternatives, and this is the cause for substantial
increases in computational complexity with large choice sets.

In the example here, we use the standard RRM model of Chorus (2010). For more complex
specifications of the model, see van Cranenburgh et al. (2015), with Apollo implementations
available at https://www.advancedrrmmodels.com/.

We define the deterministic regret for alternative i (i = 1, . . . , I) for respondent n in choice
task t as:

Ri,n,t =
K∑
k=1

∑
j 6=i

ln
(

1 + eβk(xj,n,t,k−xi,n,t,k)
)

(5.13)

where βk is the coefficient associated with attribute xk, with k = 1, . . . ,K. The regret is informed
by all the pairwise comparisons, where regret for alternative i increases whenever an alternative
j 6= i performs better than i on a given attribute. When using extreme value error terms, RRM
models are in fact Logit models, albeit not RUM-consistent models. With the assumption of type
I extreme value errors, the probability of respondent n choosing alternative i in choice task t, is
now simply given by a MNL formula as:

Pi,n,t =
e−Ri,n,t∑J
j=1 e

−Rj,n,t
. (5.14)

In RRM, we minimise the regret rather than maximising the utility, and this is achieved by
maximising the negative regret in Equation 5.14.

Given the above point, any of the Logit family models in Apollo can be used also for regret
minimisation, by simply replacing the utilities (i.e. V) by the negative of regret. The labour

https://www.advancedrrmmodels.com/

Chapter 5. Other model components 46

intensive part comes in specifying the regret functions for the alternatives, i.e. implementing
Equation 5.13.

An example of an RRM implementation is given in Figure 5.5, where we apply a MNL (i.e.
non-nested) version of RRM to the mode choice data from Section 3.1. We use a simpler im-
plementation than in Section 4.5.2, with no socio-demographics. This example is available in
Apollo_example_7.r.
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Prepare r e g r e t components f o r c a t e g o r i c a l v a r i a b l e s
access_car = 0
RFr i l l s_car = b_no_fr i l l s
RFri l l s_bus = b_no_fr i l l s
RFr i l l s_a i r = b_no_fr i l l s ∗ (s e r v i c e_a i r == 1) + b_wifi ∗ (s e r v i c e_a i r == 2) + b_food ∗ (

↪→ s e r v i c e_a i r == 3)
RFr i l l s_ r a i l = b_no_fr i l l s ∗ (s e r v i c e_ r a i l == 1) + b_wifi ∗ (s e r v i c e_ r a i l == 2) + b_food ∗ (

↪→ s e r v i c e_ r a i l == 3)

Li s t o f r e g r e t f unc t i on s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
R = l i s t ()
R[[' car ']] = asc_car +

log (1+exp (b_tt_bus∗time_bus − b_tt_car∗ time_car)) +
log (1+exp (b_tt_air∗ time_air − b_tt_car∗ time_car)) +
log (1+exp (b_tt_rai l ∗ t ime_ra i l − b_tt_car∗ time_car)) +
log (1+exp (b_cost ∗(cost_bus − cost_car))) +
log (1+exp (b_cost ∗(cos t_ai r − cost_car))) +
log (1+exp (b_cost ∗(c o s t_ra i l − cost_car))) +
log (1+exp (b_access ∗(access_bus − access_car))) +
log (1+exp (b_access ∗(acce s s_a i r − access_car))) +
log (1+exp (b_access ∗(acce s s_ra i l− access_car))) +
log (1+exp (RFri l l s_bus − RFri l l s_car)) +
log (1+exp (RFr i l l s_a i r − RFri l l s_car)) +
log (1+exp (RFr i l l s_ r a i l − RFri l l s_car))

. . .

Def ine s e t t i n g s f o r RRM model , which i s MNL with negat ive r e g r e t as u t i l i t y
mnl_sett ings <− l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
V = lapp ly (R, "∗" , −1)

)

Compute p r o b a b i l i t i e s us ing MNL model
P [[' model ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 5.5: Implementation of random regret MNL model
In a RUM model, only the attributes applying to a given alternative are used in the utility

for that alternative, and the absence of access time for car or service quality for car and bus is
of no importance. In a RRM model, we need to create these attributes given that the differences
across the alternatives are used for all attributes. We next define the regret function for each
alternative, where we here only show the regret for the car alternative, with a corresponding
formulation applying for other modes, each time using Equation 5.13. For the alternative specific

Chapter 5. Other model components 47

constants (ASCs), we adopt the convention of entering them directly into the regret function
rather than using Equation 5.13. In the mnl_settings list, we now define V to be the negative of
R by multiplying each element in R by -1. We finally make the call to apollo_mnl.

5.2.2 Decision field theory (DFT)

Decision field theory (DFT) originates in mathematical psychology (Busemeyer and Townsend,
1992, 1993) and is very different to both RUM and RRM. The key assumption under a DFT
model is that the preferences for alternatives update over time. The decision-maker considers the
alternatives until they reach an internal threshold (similar to the concept of satisficing, where one
of the options is deemed ‘good enough’) or some external threshold (i.e. some time constraint,
where a decision-maker stops deliberating on the alternatives as a result of running out of time
to make the decision).

Figure 5.6: An example of a decision-maker stopping upon reaching either an internal or external
threshold

An example of a decision process under DFT is given in Figure 5.6. In this particular example,
the decision-maker chooses different alternatives if they make their choice after reaching an internal
threshold (which is represented by the horizontal line) on the 4th preference updating timestep or
if they conclude after 10 steps upon reaching a time threshold. Mathematically, DFT has been
operationalised differently depending on whether internal or external thresholds are used. A full
specification of DFT with internal thresholds is given by Busemeyer and Townsend (1993), while
we focus here on DFT with external thresholds (c.f. Roe et al. (2001) for the first adaptation of
DFT with external thresholds for multiple alternatives). For DFT with an external threshold,
the preference values update stochastically as a result of the assumption that a decision-maker
considers just one attribute of an alternative at each timestep. Consequently, the preference values
for each alternative update iteratively:

Pt = S · Pt−1 + Vt, (5.15)

where Pt is a column vector containing the preference values of each alternative i at time t. S
is a feedback matrix with memory and sensitivity parameters (detailed in Equation 5.16) and Vt

Chapter 5. Other model components 48

is a valence vector (Equation 5.17), which varies depending on which attribute is attended to at
time t. The feedback matrix used in Apollo is based on the definition by Hotaling et al. (2010):

S = I − φ2 × exp(−φ1 ×D2), (5.16)

where I is the identity matrix of size n and n is the number of alternatives. The feedback parameter
has two free parameters. The first, φ1, is a sensitivity parameter, which allows for competition
between alternatives that are more similar (in terms of attribute values). The second, φ2, is a
memory parameter, which captures whether attributes considered at the start of the deliberation
process or attributes considered at the end are more important. Finally, D is some measure of
distance between the alternatives. In our code, we use the Euclidean distance for simplicity. Next,
the valence vector can be described as:

Vt = C ·M ·Wt + εt, (5.17)

where C is a contrast matrix used to rescale the attribute values such that they sum to zero, M is
a matrix containing the attribute values for all of the alternatives, Wt = [0..1..0]′ with entry k = 1
if and only if attribute k is the attribute being attended to by the decision-maker at timestep t,
and εt is an error term.

The implementation of DFT in Apollo allows for two different ways of accounting for the
relative importance of attributes. A user may define attribute importance weights wk, for each
attribute, that are to be estimated and which correspond to the likelihood of a decision-maker
attending to that attribute k. These however have the limitation that they must sum to one,
which consequently requires the user to have a priori knowledge on the directionality of attributes
(Hancock et al., 2018). Alternatively, the analyst may use ‘attribute scaling coefficients’. These
have many benefits (see Hancock et al. 2019 for a detailed explanation of these), including, most
importantly, avoiding the limitation of having to sum to one. By instead assuming that each
attribute is attended to with the same likelihood (all weights, wk = 1/n), the relative importance
can instead enter as a set of scaling coefficients, sk, which are applied to the attributes before
they are entered (through M in Equation 5.17) into the calculation of the valence vector at each
timestep.

The error term ε is drawn from independent and identically distributed normal draws with
mean 0 and a standard deviation which is an estimated parameter. Consequently, the preference
values Pt converge to a multivariate normal distribution (Roe et al., 2001). To calculate the
probabilities of alternatives under DFT we thus simply require the expectation and covariance
of Pt (ξt and Ωt, respectively). Hence, the probability of choosing alternative j from a set of J
alternatives at time t is:

PDFT

[
max
i∈J

Pt [i] = Pt [j]

]
=

∫
X>0

exp
[
−(X − Γ)′Λ−1(X − Γ)/2

]
/(2π|Λ|0.5)dX, (5.18)

with X the set of differences between the preference value for the chosen alternatives and each
other alternative, X = [Pt [j]− Pt [1] , ..., Pt [j]− Pt [J]]′. Additionally, we require transformations
of the expectation and covariance, Γ = Lξt, Λ = LΩtL

′, with L a matrix comprised of a column

Chapter 5. Other model components 49

vector of 1s and a negative identity matrix of size J − 1 where J is the number of alternatives.
The column vector of 1s is placed in the ith column where i is the chosen alternative.

An implementation of DFT is given in apollo_dft, which is called as:

P[["model"]] = apollo_dft(dft_settings,
functionality)

where dft_settings contains the following elements:

alternatives: A named vector containing the names of the alternatives, as for other discrete
choice models.

avail: A list containing availabilities, as for other discrete choice models.
choiceVars: A variable indicting the column in the database which identifies the alternative
chosen in a given choice situation, as for other discrete choice models.

attrValues: A list with attribute values for alternatives, where this list contains one list per
alternative, using the names from alternatives. Each alternative-specific list then contains
the attribute values for that alternative, with one entry per attribute, where these are all
column vectors with one entry per observation. DFT requires all alternatives to have each of
the specified attributes, so by default will set attribute values of zero for any attributes not
provided for a given alternative. Note that attributes specified here that are not included in
either attrWeights or attrScalings will be ignored.

altStart: A list containing a starting preference value for each alternative, using the same
names as alternatives. As with other models, these are generally defined in apollo_beta,
but could involve interactions with socio-demographics or be randomly distributed across
individuals and/or observations.

attrWeights: A list of weights, with one for each attribute. These should sum to one and
will be adjusted accordingly if they do not. As mentioned above, any attributes included in
attrValues but missing from attrWeights will be ignored. Conversely, any attribute missing
in attrValues but included in attrWeights will be created in attrValues but set to zero.
Note that attrWeights should be set to 1 if attrScalings is provided.

attrScalings: A list of scaling parameters that are applied to attribute values before they are
passed intoM in Equation 5.17. These do not need to sum to 1 across the set of attributes. As
mentioned above, any attributes included in attrValues but missing from attrScalings will
be ignored. Conversely, any attribute missing in attrValues but included in attrScalings
will be created in attrValues but set to zero. Note that attrScalings should be set to 1 if
attrWeights is provided.

procPars: A list containing the four DFT ‘process parameters’. The first of these is error_sd,
which corresponds to the standard deviation of the error term in Equation 5.17. The second,
timesteps, is the number of preference updating timesteps (t in Equations 5.15 and 5.17).
[apollo_dft will automatically adjust the number of timesteps such that there is at least one
timestep. The final process parameters are the sensitivity and process parameters, phi1 and
phi2, from Equation 5.16. All of these parameters can be entered as single values to be used
across the dataset, or can take choice-set dependent values.

Chapter 5. Other model components 50

rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

An example of a DFT implementation is given in Figure 5.7, where we apply a DFT model with
scale parameters to the mode choice data from Section 3.1. We use an identical implementation to
that of the MNL model in Section 4.5.2, with the same socio-demographics parameters. This is a
key advantage of using scaling parameters (with the weights instead being fixed) in a DFT model,
as it allows us to make equivalent adjustments to the parameters. This example is available in
Apollo_example_9.r, where a simpler DFT model without covariates applied to the Swiss route
choice data is available in Apollo_example_8.r.

Values for alternatives without a given attribute (wifi, food and access time for car, for ex-
ample) are set to zero (and would be automatically set to zero if not initially provided). Ad-
ditionally, DFT weights are automatically rescaled to sum to one, therefore attribute specific
scalings (such as the one for the travel time coefficient in this example) are more efficiently em-
ployed through the use of attribute scaling parameters. Consequently, attrWeights is set to 1 in
dft_settings.

Note that DFT process parameters can often cause identification or estimation issues (c.f.
Hancock et al. 2019). Consequently, care is required, particularly when estimating DFT models
on datasets where the process parameters are unlikely to have an impact, as poor initial starting
values for the parameters can result in convergence to poor local optima. Here, we adjust the
process parameters to aid estimation. We use exponentials to restrict the number of deliberation
timesteps to be greater than 1 and the sensitivity parameter to be positive, and a logistic transform
to ensure the memory parameter falls between 0 and 1. Additionally, with this data, we fix
error_sd by including it in apollo_fixed. Finally, it is preferable to use non-zero starting values
for all parameters.

5.3 Models for ranking, rating and continuous dependent vari-
ables

Especially when developing hybrid choice models (cf. Section 7.3, some of the dependent variables
in the model will not be of the discrete choice type. We now look at how to model such dependent
variables in Apollo.

5.3.1 Exploded Logit

Datasets may include the full ranking for alternatives, in which case an Exploded Logit model
can be used. In particular, with J different alternatives for individual n in choice situation t,
we may observe the ranking Rnt = 〈Rnt,1, . . . , Rnt,J〉, where Rnt,1 is the index for the alternative
which is ranked the highest, i.e. the choice in a simple discrete choice setting. Note that this
is different from the convention where Rnt,j is the rank of alternative j; here, Rnt,j refers to the
specific alternative ranked in jth place.

Chapter 5. Other model components 51

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io−demographics
asc_bus_value = asc_bus + asc_bus_shift_female ∗ female
asc_air_value = asc_air + asc_air_shi f t_female ∗ female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female ∗ female
b_tt_car_value = b_tt_car + b_tt_shi ft_business ∗ bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business ∗ bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business ∗ bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business ∗ bus ine s s
b_cost_value = (b_cost + b_cost_shi ft_business ∗ bus ine s s) ∗ (income / mean_income) ^

↪→ cost_income_elast

Li s t o f a t t r i bu t e va lues
at t rVa lues = l i s t ()
a t t rVa lues [[' car ']] = l i s t (time=time_car , a c c e s s=0 , co s t=cost_car , w i f i=0

↪→ , food=0)
at t rVa lues [[' bus ']] = l i s t (time=time_bus , a c c e s s=access_bus , co s t=cost_bus , w i f i=0

↪→ , food=0)
at t rVa lues [[' a i r ']] = l i s t (time=time_air , a c c e s s=acces s_a i r , co s t=cost_ai r , w i f i =1∗(s e r v i c e_a i r

↪→ == 2) , food=1∗(s e r v i c e_a i r == 3))
at t rVa lues [[' r a i l ']] = l i s t (time=time_rai l , a c c e s s=acce s s_ra i l , co s t=cos t_ra i l , w i f i =1∗(s e r v i c e_ r a i l

↪→ == 2) , food=1∗(s e r v i c e_ r a i l == 3))

Li s t o f i n i t i a l p r e f e r en c e va lues
a l t S t a r t = l i s t ()
a l t S t a r t [[' car ']] = asc_car
a l t S t a r t [[' bus ']] = asc_bus_value
a l t S t a r t [[' a i r ']] = asc_air_value
a l t S t a r t [[' r a i l ']] = asc_rai l_value

Li s t o f a t t r i bu t e s c a l i n g f a c t o r s
a t t r S c a l i n g s = l i s t (time = l i s t (car = b_tt_car_value , bus = b_tt_bus_value , a i r = b_tt_air_value ,

↪→ r a i l = b_tt_rail_value) ,
a c c e s s = b_acc ,
co s t = b_cost_value ,
w i f i = b_wifi ,
food = b_food)

Li s t o f p roce s s parameters
procPars = l i s t (

error_sd = p_error_sd ,
t imesteps = 1+exp (p_timesteps) ,
phi1 = exp (p_phi1) ,
phi2 = exp (p_phi2) /(1+exp (p_phi2))

)

Def ine s e t t i n g s f o r DFT model component
d f t_se t t i ng s <− l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
a t t rVa lues = attrValues ,
a l t S t a r t = a l tS ta r t ,
attrWeights = 1 , ### Using s c a l i n g f a c t o r s , so attrWeights must be s e t to 1 .
a t t r S c a l i n g s = at t rS ca l i ng s ,
procPars = procPars

)

Compute cho i c e p r o b a b i l i t i e s us ing DFT model
P [[' model ']] = apo l lo_dft (d f t_set t ings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 5.7: DFT implementation

Chapter 5. Other model components 52

We then have that the probability of the observed ranking is given by:

Pnt =

J−1∏
i=1

e
µiVRnt,i∑J

j=i e
µiVRnt,j

, (5.19)

where this is given by a product of Logit probabilities for all but the last ranking (which is just a
single alternative), where the denominator gradually omits alternatives, and where we allow for
differences in scale across the stages, with an appropriate normalisation, e.g. µ1 = 1.

In Apollo, the Exploded Logit model is implemented in the function apollo_el, which is called
called as follows:

P[["model"]] = apollo_el(el_settings,
functionality)

where the contents of el_settings are a little different from the earlier MNL, NL and CNL
models. In particular, we have:

alternatives: A named vector containing the names of the alternatives, as for MNL, NL and
CNL.

avail: A list containing availabilities, as for MNL, NL and CNL.
choiceVars: A list containing the names of the variables indicating the column in the database
which identify the choices at each stage in the ranking, except for the final (worst) alternative.
If not all alternatives are available for all individuals, then some of the later rankings will not
apply for these individuals, and the user should put a value of -1 in the data for those entries.
For example, if a given person only has two out of the four alternatives available, then the
third and fourth ranking should be given as -1 in the data for that individual.

V: A list of utilities, as for MNL, NL and CNL.
scales: An optional argument given by a list, with one entry per stage in the ranking, giving
the scale parameter to be used in that stage.

rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

An example using the Exploded Logit model is given in Apollo_example_10.r, using the
drug choice data from Section 3.3. We use a dummy coded specification for the three categorical
variables, along with a continuous specification for risk and cost.

Chapter 5. Other model components 53

The utility for alternative j in choice situation t for individual n is given by:

Vj,n,t =
5∑
s=1

βbrands ·
(
xbrandj,n,t == s

)
+

6∑
s=1

βcountrys ·
(
xcountryj,n,t == s

)
+

3∑
s=1

βcharacteristics ·
(
xcharacteristicj,n,t == s

)
+ βside_effects · xside_effectsj,n,t
+ βprice · xpricej,n,t (5.20)

For the first three rows in Equation 5.20, one of the β parameters in each row is constrained to
zero (dummy coded), and not all levels apply for each alternative, as described in Appendix B.

The implementation of the model is shown in Figure 5.8. Special care is required for the
qualitative attributes. These are coded as text in the data, and one parameter needs to be
associated with each level, where we impose an appropriate normalisation in apollo_fixed to set
the parameter for one level to zero for each attribute. The levels that are included in the utility
functions differ across alternatives, as reflected in the design of the survey (cf. Table B.3). The
key different from an MNL model arises in the inclusion of choiceVars instead of choiceVar
in el_settings where this differs from giving a single preferred alternative for each observation
and instead giving one column for each stage in the ranking except for the final stage. We also
provide scale parameters for these three stages in el_settings$scales, where the scale for the
first stage is normalised to 1.

5.3.2 Ordered Logit and Ordered Probit

For ordinal dependent variables, the function apollo_ol provides an implementation of the
Ordered Logit model, while apollo_op provides an implementation of the Ordered Probit model.
These models are used where, with Yn,t being the observed value for the dependent variable for the
tth observation for individual n, Yn,t can take S different possible values, going from s = 1, . . . , S.

Ordered Logit

In an Ordered Logit (OL) model, the probability of observing value s is given by:

PYn,t=s =
eτs−Vn,t

1 + eτs−Vn,t
− eτs−1−Vn,t

1 + eτs−1−Vn,t (5.21)

The likelihood of the observed value Yn,t is then given by:

LYn,t =
S∑
s=1

δ(Yn,t=s)

[
eτs−Vn,t

1 + eτs−Vn,t
− eτs−1−Vn,t

1 + eτs−1−Vn,t

]
, (5.22)

Chapter 5. Other model components 54

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Li s t o f u t i l i t i e s : these must use the same names as in e l_se t t ing s , order i s i r r e l e v a n t
V = l i s t ()
V[[' a l t1 ']] = (b_brand_Artemis ∗(brand_1=="Artemis ") + b_brand_Novum∗(brand_1=="Novum")

+ b_country_CH∗(country_1=="Switzer land ") + b_country_DK∗(country_1=="Denmark") +
↪→ b_country_USA∗(country_1=="USA")

+ b_char_standard ∗(char_1=="standard ") + b_char_fast ∗(char_1=="f a s t ac t ing ") +
↪→ b_char_double ∗(char_1=="double s t r ength ")

+ b_risk∗ s ide_e f f ec t s_1
+ b_price∗price_1)

V[[' a l t2 ']] = (b_brand_Artemis ∗(brand_2=="Artemis ") + b_brand_Novum∗(brand_2=="Novum")
+ b_country_CH∗(country_2=="Switzer land ") + b_country_DK∗(country_2=="Denmark") +

↪→ b_country_USA∗(country_2=="USA")
+ b_char_standard ∗(char_2=="standard ") + b_char_fast ∗(char_2=="f a s t ac t ing ") +

↪→ b_char_double ∗(char_2=="double s t r ength ")
+ b_risk∗ s ide_e f f ec t s_2
+ b_price∗price_2)

V[[' a l t3 ']] = (b_brand_BestValue ∗(brand_3=="BestValue ") + b_brand_Supermarket ∗(brand_3=="Supermarket
↪→ ") + b_brand_PainAway∗(brand_3=="PainAway")

+ b_country_USA∗(country_3=="USA") + b_country_IND∗(country_3=="India ") + b_country_RUS
↪→ ∗(country_3=="Russia ") + b_country_BRA∗(country_3=="Braz i l ")

+ b_char_standard ∗(char_3=="standard ") + b_char_fast ∗(char_3=="f a s t ac t ing ")
+ b_risk∗ s ide_e f f ec t s_3
+ b_price∗price_3)

V[[' a l t4 ']] = (b_brand_BestValue ∗(brand_4=="BestValue ") + b_brand_Supermarket ∗(brand_4=="Supermarket
↪→ ") + b_brand_PainAway∗(brand_4=="PainAway")

+ b_country_USA∗(country_4=="USA") + b_country_IND∗(country_4=="India ") + b_country_RUS
↪→ ∗(country_4=="Russia ") + b_country_BRA∗(country_4=="Braz i l ")

+ b_char_standard ∗(char_4=="standard ") + b_char_fast ∗(char_4=="f a s t ac t ing ")
+ b_risk∗ s ide_e f f ec t s_4
+ b_price∗price_4)

Def ine s e t t i n g s f o r exploded l o g i t
e l_ s e t t i n g s = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t (a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
cho iceVars = l i s t (best , second_pref , th i rd_pre f) ,
V = V,
s c a l e s = l i s t (1 , scale_2 , scale_3)

)

Compute exploded l o g i t p r o b a b i l i t i e s
P [[" model "]]= apo l lo_e l (e l_se t t ing s , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 5.8: Exploded Logit implementation

where, for normalisation, we set τS = +∞ and τ0 = −∞, such that the probability of Yn,t = 1 is
given by eτ1−Vn,t

1+eτ1−Vn,t
while the probability of Yn,t = S is given by 1− eτS−1−Vn,t

1+eτS−1−Vn,t . In our notation,
Vn,t is the utility used inside the Ordered Logit model, which will be a function of characteristics
of the decision maker and the scenario that the dependent variable relates to.

For an example using apollo_ol, see the section on hybrid choice models (Section 7.3). In

Chapter 5. Other model components 55

Apollo, the apollo_ol function is called as follows:

P[["model"]] = apollo_ol(ol_settings,
functionality)

where the contents of ol_settings are a little different from the earlier MNL, NL and CNL
models. In particular, we have:

outcomeOrdered: A variable indicating the column in the database which identifies the level
selected for the ordinal variable in each observation.

V: A numeric vector containing the explanatory variable used in the Ordered Logit model, i.e.
the utility in Equation 5.21.

tau: A list containing the thresholds that are used in the model. The thresholds can be either
scalars (i.e. the same across all observations), vectors (one value per observation) or matrices
or cubes if allowing for random heterogeneity in the thresholds. The list should have one fewer
element than the number of possible values for the dependent variable Y. Extreme thresholds
at − inf and + inf are added automatically by Apollo.

coding: An optional argument of numeric or character vector type which is only required as
an input if the dependent variable does not use an incremental coding from 1 to a value equal
to the number of possible values for the dependent variable Y. This can be used both if the
dependent variable is numeric in the data but not monotonic or with unequal increment, or if
the dependent variable is given in string format.

rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

Ordered Probit

In an Ordered Probit (OP) model, the probability of observing value s is given by:

PYn,t=s = P (τs−1 < Vn,t + ε < τs)

= P (ε < τs − Vn,t)− P (ε < τs−1 − Vn,t)
= Φ(τs − Vn,t)− Φ(τs−1 − Vn,t)

The likelihood of the observed value Yn,t is then given by:

LYn,t =

S∑
s=1

δ(Yn,t=s) [Φ(τs − Vn,t)− Φ(τs−1 − Vn,t)] , (5.23)

where, for normalisation, we set τS = +∞ and τ0 = −∞, such that the probability of Yn,t = 1
is given by Φ(τ1 − Vn,t) while the probability of Yn,t = S is given by 1 − Φ(τs−1 − Vn,t). In our

Chapter 5. Other model components 56

notation, Vn,t is the utility used inside the Ordered Probit model, which will be a function of
characteristics of the decision maker and the scenario that the dependent variable relates to.

While this manual does not include an example with an Ordered Probit, the section on hybrid
choice models (Section 7.3) does include an example with an Ordered Logit. As both models are
analogous, just changing the function calls in that example from apollo_ol to apollo_op will be
enough to use an Ordered Probit instead of the original Ordered Logit. In Apollo, the apollo_op
function is called as follows:

P[["model"]] = apollo_op(op_settings,
functionality)

where the contents of op_settings are the same as in ol_setting. In particular, we have:

outcomeOrdered: A variable indicating the column in the database which identifies the level
selected for the ordinal variable in each observation.

V: A numeric vector containing the explanatory variable used in the Ordered Logit model, i.e.
the utility in Equation 5.21.

tau: A list containing the thresholds that are used in the model. The thresholds can be either
scalars (i.e. the same across all observations), vectors (one value per observation) or matrices
or cubes if allowing for random heterogeneity in the thresholds. The list should have one fewer
element than the number of possible values for the dependent variable Y. Extreme thresholds
at − inf and + inf are added automatically by Apollo.

coding: An optional argument of numeric or character vector type which is only required as
an input if the dependent variable does not use an incremental coding from 1 to a value equal
to the number of possible values for the dependent variable Y. This can be used both if the
dependent variable is numeric in the data but not monotonic or with unequal increment, or if
the dependent variable is given in string format.

rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

5.3.3 Normally distributed continuous variables

For continuous dependent variables (or ordinal dependent variables that are treated as continu-
ous) the function apollo_normalDensity is available, which is an implementation of the Normal
probability density function. This implies that the probability of observing the specific value for
the dependent variable Y in situation t for person n is given by:

P (Yn,t) =
φ
(
Yn,t−Xn,t−µ

σ

)
σ

, (5.24)

where Xn,t is the explanatory variable used, µ and σ are the estimated means and standard
deviations, and φ is the standard Normal density function.

Chapter 5. Other model components 57

For an example using apollo_normalDensity, see the section on hybrid choice models (Section
7.3). The apollo_normalDensity is called as follows:

P[["model"]] = apollo_normalDensity(normalDensitysettings,

functionality)

where the contents of normalDensity_settings now include:

outcomeNormal: A variable indicating the column in the database which contains the value for
the dependent variable in each observation.

xNormal: A numeric vector containing the explanatory variable used in Equation 5.24.
mu: The parameter used as the mean for the Normal density.
sigma: The parameter used as the standard deviation for the Normal density.
rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

5.4 Discrete-continuous models

While choice modelling is generally best known for the study of the choice between mutually
exclusive alternatives, a large body of research has also looked at the joint choice of multiple
alternatives and the consumption of different quantities of each of these. Especially the family
of Multiple Discrete Continuous Extreme Value models has received extensive interest in recent
years, and two of these models are implemented in Apollo.

5.4.1 Multiple Discrete Continuous Extreme Value (MDCEV) model

The MDCEV model (Bhat, 2008) is a representation of a multiple discrete-continuous decisions
process. Such a process consist of choosing one or more elements from a set of alternatives,
and then choosing a non-negative amount of each of the chosen elements. Examples of such a
process are consumption (what products or services to buy and how much of each), and time
use (what activities to engage with and for how long). More formally, the MDCEV model is
a stochastic implementation of the classical consumer maximization processes, where consumers
allocate resources (e.g. their income) in a way that maximizes their utility. This problem can be
formulated as follows:

Max
xk∀k

K∑
k=1

γk
αk
ψk

((
xk
γk

+ 1

)αk
− 1

)

subject to
K∑
k=1

xkpk = B

(5.25)

ψk = exp(Vk + εk), (5.26)

Chapter 5. Other model components 58

where K is the number of alternatives, xk is the amount consumed of product k, and pk is the unit
price or cost of alternative k, and B is the budget available to the individual for consumption. The
term εk is an independent and identically distributed random disturbance following a Gumbel(0,
σ) distribution. Finally, αk and γk are parameters determining satiation, while Vk determines
each alternative’s base utility (i.e. its marginal utility at zero consumption).

The probability of an observed vector of consumptions is then given by:

P (x1
∗, x2

∗, · · · , xM ∗, 0, · · · , 0)

=
1

p1

1

σM−1

(
M∏
m=1

fm

)(
M∑
m=1

pm
fm

) ∏M
m=1e

Vi/σ(∑K
k=1e

Wk/σ
)M
 (M − 1)!,

(5.27)

where fi = 1−αi
x∗i+γi

and Wk = Vk +(αk − 1) log(
x∗k
γk

+1)− log(pk), and x∗k is the observed (optimum)
consumption of product k.

A revised formulation as shown in Equation 5.28 is obtained when an outside good is included
among the alternatives. An outside good is a product that is consumed by all individuals in
the sample. The outside good usually represents an aggregate measure of the consumption of
all products that are not of interest for the study. For example, if a study focuses on use of
leisure time, the outside good might be all activities that are not leisure (such as sleeping, work,
travelling, etc.), while the inside goods (i.e. all alternatives that are not the outside good) could
deal with leisure in a more detailed way (e.g. going to the park, hiking, going to the cinema,
meeting friends, etc.).

P (x1
∗, x2

∗, · · · , xM ∗, 0, · · · , 0)

=
1

σM−1

(
M∏
m=1

fm

)(
M∑
m=1

pm
fm

) ∏M
m=1e

Vi/σ(∑K
k=1e

Wk/σ
)M
 (M − 1)!,

(5.28)

The function apollo_mdcev calculates the loglikelihood of an MDCEV model, using equation 5.27
if no outside good is provided and uses equation 5.28 if an outside good is provided. An example
of a function call, as well as a definition of its arguments follow. The function is called as:

P[["model"]] = apollo_mdcev(mdcev_settings,
functionality)

The list mdcev_settings contains the following objects:

alternatives: Character vector containing the name of all alternatives. If one of these altern-
atives is called outside, it will automatically be used as the outside good.

avail: List of availabilities, using the names from alternatives. Each element can be scalar
(0 or 1) or a vector detailing availability for each observation.

continuousChoice: List of continuous consumption, using the names from alternatives.
Each element must be a vector of length N (number of observations) indicating the amount
consumed.

Chapter 5. Other model components 59

V: A list of length K (i.e. number of alternatives), containing the deterministic part of the base
utility of each alternative. The outside good should have V=0 if included.

alpha: List containing the α parameter for each alternative, using the names from
alternatives.

gamma: List containing the γ parameter for each alternative, using the names from
alternatives, excluding any outside good.

sigma: Scalar representing the scale parameter of the error term. If there is no price variation
across products, this should be fixed to 1.

cost: List containing the cost or price of each alternative, using the names from alternatives.
Each element can be a scalar if the price does not change across observations, or a vector of
length equal to the number of observations in the data, detailing the price for each observation.

budget: Vector with the amount of the resource (e.g. money or time) available for each obser-
vation. It must be equal to the total consumption of that observation.

minConsumption: Optional argument, which, if provided, should be a list with as many ele-
ments as alternatives. Each element can be either a scalar or a vector defining the minimum
consumption of an alternative if it is consumed.

outside: Optional argument with the name of an outside good. This is not needed if one of
the alternatives is already called outside.

rows: The optional rows argument already described for the earlier models.
componentName: The optional argument giving a name to the model component described
already for earlier models.

As discussed at length by Bhat (2008), different profiles exist for normalisation of a MDCEV
model, either using a generic α and alternative-specific γ parameters, an α parameter only for
the outside good (and set to zero for others) along with alternative-specific γ parameters, or
alternative specific α terms with γ = 1 for all goods. In our examples below, we use a generic
α and alternative-specific γ parameters. Other profiles can be implemented by simply changing
which parameters are generic and which are alternative specific, and making some α terms equal
to zero, as appropriate.

We include two examples of the MDCEV model on the time use data described in Section 3.4.
The first example, Apollo_example_11.r does not include an outside good. We illustrate this in
Figure 5.9.

We begin by defining the names of the alternatives, availabilities and continuous consumptions,
where we turn minutes into hours. We then create the list of utilities, where, in our example,
these include alternative specific constants only, where we fix δhome to zero for identification. This
is followed by the definition of a generic α parameter, which is constrained to be below 1 by using
a logistic transform, with α = 1

1+e−αbase
, and the set of γ parameters, where these are alternative-

specific in our case. We finally define the costs, turn the budget into hours, and make the call to
apollo_mdcev. In this example, we also fix sig to its starting value of 1 in apollo_fixed.

The second example, Apollo_example_12.r, groups together some alternatives to create an
outside good. It also incorporates socio-demographics in the utility function, though not in the α
and γ terms, which is however also possible in Apollo. We illustrate this example in Figure 5.10.

To create the new activities, we sum some of the activities up after reading in the data, where

Chapter 5. Other model components 60

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Def ine i nd i v i dua l a l t e r n a t i v e s
a l t e r n a t i v e s = c (" dropOff " ,

. . .
" other ")

Def ine a v a i l a b i l i t i e s
a v a i l = l i s t (dropOff = 1 ,

. . .
other = 1)

Def ine cont inuous consumption f o r i nd i v i dua l a l t e r n a t i v e s
cont inuousChoice = l i s t (dropOff = t_a01 /60 ,

. . .
other = t_a12 /60)

Def ine u t i l i t i e s f o r i nd i v i dua l a l t e r n a t i v e s
V = l i s t ()
V[[" dropOff "]] = delta_dropOff
. . .
V[[" other "]] = delta_other

Def ine alpha parameters
alpha = l i s t (dropOff = 1 /(1 + exp(−alpha_base)) ,

. . .
other = 1 /(1 + exp(−alpha_base)))

Def ine gamma parameters
gamma = l i s t (dropOff = gamma_dropOff ,

. . .
other = gamma_other)

Def ine c o s t s f o r i nd i v i dua l a l t e r n a t i v e s
co s t = l i s t (dropOff = 1 ,

. . .
other = 1)

Def ine budget
budget = budget /60

Def ine s e t t i n g s f o r MDCEV model
mdcev_settings <− l i s t (a l t e r n a t i v e s = a l t e r n a t i v e s ,

a v a i l = ava i l ,
cont inuousChoice = continuousChoice ,
V = V,
alpha = alpha ,
gamma = gamma,
sigma = sig ,
co s t = cost ,
budget = budget)

Compute p r o b a b i l i t i e s us ing MDCEV model
P [[" model "]] = apollo_mdcev (mdcev_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 5.9: MDCEV implementation without outside good

Chapter 5. Other model components 61

we create an outside good by combining time spent travelling with time spent at home. We also
create a generic leisure activity. The remainder of the specification is no different in principle
from that in Figure 5.10 with the exception of there being an alternative called outside, and
with using more detailed utility functions.

5.4.2 Multiple Discrete Continuous Nested Extreme Value (MDCNEV)
model

The MDCNEV is an extension to the MDCEV model, proposed by Pinjari and Bhat (2010a). It
incorporates correlation between alternatives, in a similar way to the Nested Logit (NL), where
correlation can be introduced by nesting, i.e. grouping alternatives that are correlated among
them. The implementation of MDCNEV in Apollo allows for only a single level of nesting and
is also only valid for models with an outside good, i.e. a product that is consumed in every
observation. The likelihood function of the model is as follows.

P (x1
∗
, x2
∗
, . . . , xM

∗
, 0, . . . , 0)

= |J|

∏
i∈chosen alts

e

Vi
θi

SM∏
s=1

 ∑
i∈sthnest

e

Vi
θs


qs

·
q1∑
r1=1

. . .

qs∑
rs=1

. . .

qSM∑
rSM

=1



SM∏
s=1



 ∑
i∈sthnest

e

Vi
θs


θs

Sk∑
s=1


 ∑
i∈sthnest

e

Vi
θs


θs





qs−rs+1

SM∏
s=1

sum(Xrs)

SM∑
s=1

(qs − rs + 1)− 1

!


, (5.29)

For a detailed explanation of the values in the equation, see Pinjari and Bhat (2010a).
The apollo_mdcnev function is called as:

P[["model"]] = apollo_mdcev(mdcnev_settings,
functionality)

Aside from the previously defined contents in mdcnev_settings, we now have two additional
inputs, namely:

mdcnevNests: A named vector containing the names of the nests and the associated structural
parameters theta. For each theta, we give the name of the associated parameter. Unlike in
apollo_nl, the root is not included for apollo_cnl as only two-level structures are used.
mdcnevStructure: A matrix showing the allocation of alternatives to nests, with one row
per nest and one column per alternative, using the same ordering as in alternatives and
mdcnevStructure. Element (i, j) should take value 1 if alternative j belongs to nest i, and
zero otherwise.

The example Apollo_example_13.r is a nested version of the model with an outside good used in
Figure 5.10, i.e. Apollo_example_12.r. The model uses two nests, one for mandatory activities
(work, school, private) and one for optional activities (all others, including the outside good). In
Figure 5.11, we only show the part of the code that differs from the standard MDCEV model.

Chapter 5. Other model components 62

database = read . csv (" apollo_timeUseData . csv " , header=TRUE)

Create consumption va r i a b l e s f o r combined a c t i v i t i e s
database$t_outs ide = rowSums(database [, c (" t_a01 " , "t_a06 " , "t_a10 " , "t_a11 " , "t_a12 ")]) # out s ide good :

↪→ time spent at home and t r a v e l l i n g
database$ t_le i su re = rowSums(database [, c (" t_a07 " , "t_a08 " , "t_a09 ")])

. . .

a p o l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Def ine i nd i v i dua l a l t e r n a t i v e s
a l t e r n a t i v e s = c (" out s ide " ,

. . .
" l e i s u r e ")

Def ine a v a i l a b i l i t i e s
a v a i l = l i s t (out s ide = 1 ,

. . .
l e i s u r e = 1)

Def ine cont inuous consumption f o r i nd i v i dua l a l t e r n a t i v e s
cont inuousChoice = l i s t (out s ide = t_outs ide /60 ,

. . .
l e i s u r e = t_ l e i s u r e /60)

Def ine u t i l i t i e s f o r i nd i v i dua l a l t e r n a t i v e s
V = l i s t ()
V[[" out s ide "]] = 0
. . .
V[[" l e i s u r e "]] = de l t a_ l e i s u r e + delta_leisure_wknd ∗weekend

Def ine alpha parameters
alpha = l i s t (out s ide = 1 /(1 + exp(−alpha_base)) ,

. . .
l e i s u r e = 1 /(1 + exp(−alpha_base)))

Def ine gamma parameters
gamma = l i s t (work = gamma_work ,

. . .
l e i s u r e = gamma_leisure)

Def ine c o s t s f o r i nd i v i dua l a l t e r n a t i v e s
co s t = l i s t (out s ide = 1 ,

. . .
l e i s u r e = 1)

Def ine budget
budget = budget /60

Def ine s e t t i n g s f o r MDCEV model
mdcev_settings <− l i s t (a l t e r n a t i v e s = a l t e r n a t i v e s ,

a v a i l = ava i l ,
cont inuousChoice = continuousChoice ,
V = V,
alpha = alpha ,
gamma = gamma,
sigma = sig ,
co s t = cost ,
budget = budget)

Compute p r o b a b i l i t i e s us ing MDCEV model
P [[" model "]] = apollo_mdcev (mdcev_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 5.10: MDCEV implementation with an outside good

Chapter 5. Other model components 63

We define two nests, and assign the appropriate θ parameter to each, where in our example,
theta_optional is further fixed to 1 via apollo_fixed as its estimate was not significantly
different from 1. We then describe the allocation of alternatives to nests using a matrix of ones
and zeros, with one row per nest and one column per alternative, where each alternative falls into
exactly one nest. Finally, we make the call to apollo_mdcnev. For this model, we use scaling of
some of the parameters in model estimation given the earlier findings of very diverse scales for the
individual parameters in the corresponding simple MDCEV model, i.e. Apollo_example_12.r.
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .

Def ine ne s t ing s t ru c tu r e
mdcnevNests = l i s t (mandatory = theta_mandatory ,

op t i ona l = theta_opt iona l)

mdcnevStructure = matrix (0 , nrow=length (mdcnevNests) , nco l=length (V))
outs ide work schoo l shopping p r i va t e l e i s u r e
mdcnevStructure [1 ,] = c (0 , 1 , 1 , 0 , 1 , 0) # mandatory
mdcnevStructure [2 ,] = c (1 , 0 , 0 , 1 , 0 , 1) # opt i ona l

. . .

Def ine s e t t i n g s f o r MDCNEV model
mdcnev_settings <− l i s t (. . .

mdcnevNests = mdcnevNests ,
mdcnevStructure = mdcnevStructure)

Compute p r o b a b i l i t i e s us ing MDCNEV model
P [[" model "]] = apollo_mdcnev (mdcnev_settings , f u n c t i o n a l i t y)

. . .
}

Figure 5.11: MDCNEV implementation and call to apollo_estimate using scaling

5.5 Adding new model types

As already mentioned, users of Apollo are not restricted to those models for which functions are
available in the code. Any model that yields a probability for an outcome can be used in the
code and parameters for the model can be estimated using either classical or Bayesian estimation.
The advantage of the predefined functions is of course that they run a large number of checks to
avoid issues with mis-specification and produce output for different user needs. The level of these
checks and output flexibility that a user implements for new models will vary as a function of the
user’s needs.

The user has the option of either creating new functions in R that are defined outside
apollo_probabilities much in the same way as for example apollo_mnl, or to simply code
the probabilities for a model inside apollo_probabilities. An example of the latter approach
is shown in Section 11.4.

Clearly, coding models as separate functions is preferable in terms of reusability as well as code
organisation. Users who are interested in coding their own functions should inspect the code for
some of the implemented functions for guidance, for example using apollo_ol as a simple start.
For user defined models to be compatible with Apollo, a number of simple basic requirements
need to be fulfilled. In particular, the function needs to take functionality as an argument to

Chapter 5. Other model components 64

be able to produce different output depending on the value passed to it for functionality. Not
all possible values discussed for functionality in this manual need to be implemented for new
models, but essential capabilities include the ability to deal with the following four settings for
functionality:

estimate: Return the probabilities for each row in the data, using a vector, matrix or cube
(array) depending on the presence of random coefficients (cf. Section 6.1).
validate: Return TRUE if all tests are passed, or TRUE if no tests are implemented.
zero_LL: Return the log-likelihood of the model component with all parameters at zero, set
to NA if not applicable for given model.
output: Same as functionality="estimate".

If the models are to be compatible with random coefficients, they furthermore need to be able to
produce probabilities as three-dimensional arrays, as discussed in Section 6.1. Additionally, if the
models are components of an overall model from which predictions are to be made (cf. Section
9.6), then output from the function is also needed with functionality==prediction, even if
returning NA for that model component.

An example of a new model implemented in a fully compatible way with Apollo is presented
in the compressed folder emdcev.R which is available in the examples page of the Apollo website
(www.ApolloChoiceModelling.com. The compressed folder contains five files:

apollo_emdcev.R : This file contains the definition of the new function, and extension to the
MDCEV model. The function receives two arguments: emdcev_settings and functionality.
While the first argument is a list grouping all relevant inputs for the model, the second
argument determines the behaviour of the function, e.g. "estimation", "prediction", etc.

apollo_odStgoTrips.csv : Revealed preference dataset containing the number of trips per-
formed in a day by a household. It also includes some sociodemographics as well as the macro-
area-location of the household. This data comes from the 2012 Santiago origin-destination
survey (www.sectra.cl).

apollo_odStgoTripsDictionary.txt : Text file defining each variable contained in
apollo_odStgoTrips.csv.

apollo_timeUseData.csv : Time use database (see 3.4).
timeUse.r : Example model script using the extended MDCEV on the time use data
(apollo_timeUseData.csv).

trips.R : Example model script using the extended MDCEV on the trips data
(apollo_odStgoTrips.csv).

www.ApolloChoiceModelling.com
www.sectra.cl

Chapter 6

Incorporating random heterogeneity

In this chapter, we describe how to use the Apollo package to incorporate random coefficients.
We look first at continuous random heterogeneity before looking at Discrete Mixtures (DM) and
Latent Class (LC) models, and also a combination of the two. Finally, we discuss multi-core
estimation, which is beneficial for models with random heterogeneity. In this section, we use the
simple binary public transport route choice SP data described in Section 3.2.

6.1 Continuous random coefficients

6.1.1 Introduction

The Apollo package allows for a very general use of continuous random coefficients. The code
works for models allowing for intra-individual mixing (i.e. heterogeneity across observations for
the same individual), inter-individual mixing (i.e. heterogeneity across individual people), as well
as a mixture of the two. For background, we provide a brief recap of the discussions in Hess and
Train (2011) on this topic.

In cross-sectional data, we would have a sample of N individuals, indexed as n = 1, . . . , N ,
where each individual is observed to face only one choice situation. Let βn be a vector of the true,
but unobserved taste coefficients for consumer n. We assume that βn ∀n is iid over consumers
with density g (β | Ω), where Ω is a vector of parameters of this distribution, such as the mean
and variance. Let jn∗ be the alternative chosen by consumer n, such that Pn (jn∗ | β) gives the
probability of the observed choice for consumer n, conditional on β. The Mixed Logit probability
of consumer n’s chosen alternative is

Pn (jn∗ | Ω) =

∫
β
Pn (j∗n | β) g (β | Ω) dβ. (6.1)

The log-likelihood function is then given by:

LL (Ω) =
N∑
n=1

ln

(∫
β
Pn (j∗n | β) g (β | Ω) dβ

)
, (6.2)

65

Chapter 6. Incorporating random heterogeneity 66

Since the integrals do not take a closed form, they are approximated by simulation. The simulated
log-likelihood is:

SLL (Ω) =
N∑
n=1

ln

(
1

R

R∑
r=1

Pn (j∗n | βr,n)

)
. (6.3)

where βr,n gives the rth draw (out of R) from g(β | Ω) for individual n. Different draws are used
for the N consumers, for a total of NR draws.

When we have multiple observations per individual, we typically make the assumption that
sensitivities vary across people, but stay constant across individuals. We would then have that
the likelihood of the sequence of choices for person n is given by:

Pn (Ω) =

∫
β

Tn∏
t=1

Pn,t
(
j∗n,t | β

)
g (β | Ω) dβ, (6.4)

where j∗n,t is the alternative chosen by individual n in choice situation t. Note that, since the
same sensitivities apply to all choices by a given consumer, the integration over the density of β
applies to all the consumer’s choices combined, rather than each one separately.

The log-likelihood function for the observed choices is then:

LL (Ω) =

N∑
n=1

ln

(∫
β

[
Tn∏
t=1

(
Pn,t

(
j∗n,t | β

))]
g (β | Ω) dβ

)
. (6.5)

The simulated LL (SLL) is:

SLL (Ω) =
N∑
n=1

ln

(
1

R

R∑
r=1

[
Tn∏
t=1

(
Pn,t

(
j∗n,t | βr,n

))])
. (6.6)

Note that in this formulation, the product over choice situations is calculated for each draw; the
product is averaged over draws; and then the log of the average is taken. The SLL is the sum over
consumers of the log of the average (across draws) of products. The calculation of the contribution
to the SLL function for consumer n involves the computation of RTn Mixed Logit probabilities.

Instead of utilising the panel nature of the data, the model could be estimated as if each
choice were from a different consumer. That is, the panel data could be treated as if they were
cross-sectional. The objective function is similar to Equation 6.2 except that the multiple choice
situations by each consumer are represented as being for different individuals:

LL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(∫
β
Pn,t

(
j∗n,t | β

)
g (β | Ω) dβ

)
, (6.7)

where the integration across the distribution of taste coefficients is applied to each choice, rather
than to each consumer’s sequence of choices. This function is simulated as:

SLL (Ω) =

N∑
n=1

Tn∑
t=1

ln

(
1

R

R∑
r=1

Pn,t
(
j∗n,t | βr,t,n

))
. (6.8)

Chapter 6. Incorporating random heterogeneity 67

where βr,t,n is the rth draw from g(β | Ω) for choice situation t for individual n. Different draws
are used for the Tn choice situations for consumer n, as well as for the N consumers. Consumer
n’s contribution to the SLL function utilises RTn draws of β rather than R draws as in Equation
6.6, but involves the computation of the same number of Logit probabilities as before, namely,
RTn. The difference is that the averaging across draws is performed before taking the product
across choice situations.

We now generalise the specification on panel data to include intra-personal taste heterogeneity
in addition to inter-personal heterogeneity. Let βn,t = αn + γn,t where αn is distributed across
consumers but not over choice situations for a given consumer, and γn,t is distributed over choice
situations as well as consumers. That is, αn captures inter-personal variation in tastes while γn,t
captures intra-personal variation. Their densities are denoted as f(α) and h(γ), respectively,1

where their dependence on underlying parameters, contained collectively in Ω, is suppressed for
convenience.

The LL function is given by:

LL (Ω) =
N∑
n=1

ln

[∫
α

(
Tn∏
t=1

(∫
γ
Pn,t

(
j∗n,t | α, γ

)
h (γ) dγ

))
f (α) dα

]
. (6.9)

The two levels of integration create two levels of simulation, which can be specified as:

SLL =
N∑
n=1

ln

[
1

R

R∑
r=1

(
Tn∏
t=1

1

K

K∑
k=1

(
Pn,t

(
j∗n,t | αr,n, γk,t,n

)))]
. (6.10)

This simulation uses R draws of α for consumer n, along with K Tn draws of γ. Note that, in this
specification, the same draws of γ are used for all draws of α. That is, γk,t,n does not have an
additional subscript for r. The total number of evaluations of a Logit probability for consumer n
is equal to RK Tn, compared to RTn when there is only inter-personal variation.

The Apollo package allows the user to incorporate continuous random heterogeneity for all
types of models. In a model using apollo_mnl inside apollo_probabilities, we would thus
obtain a Mixed Multinomial Logit (MMNL) model, while, with a CNL core, i.e. apollo_cnl, we
would have a Mixed CNL model. Users can similarly specify and estimate mixed MDCEV models
(an example is included in Apollo_example_17.r, and clearly also hybrid choice structures, as
described in Section 7). It is straightforward to combine continuous random heterogeneity with
deterministic heterogeneity for individual parameters, as shown in our example. There are very few
limits imposed on what parameters can incorporate continuous random heterogeneity, opening up
the use of error components for correlation across alternatives and heteroskedasticity (cf. Section
6.1.5). The parameters (in the models made available with Apollo) for which random heterogeneity
is not allowed are:

• the allocation parameters α in a CNL model
• the σ parameter in a MDCEV model
• the θ parameters in a MDCNEV model

1The mean of βn is captured in αn such that the mean of γn,t is zero.

Chapter 6. Incorporating random heterogeneity 68

A very flexible implementation is used that minimises the changes in the code that are re-
quired to introduce random coefficients or to change between the different layers of integration.
In particular, the package works with arrays in three dimensions. For a model without continuous
random coefficients, the likelihood for a model (prior to multiplying across observations for the
same individual) is contained in a column vector of length O, where O is the number of obser-
vations in the data. If we introduce continuous random heterogeneity across individual people,
with typically multiple observations per person, the likelihood is given by a OxR1 matrix, with
one row per observation, and one column per draw from the random coefficients, where we use R1

draws per random coefficient and per individual. Here, the same draws would be reused across
the Tn rows for a given individual n, meaning that we would have N sets of draws, where N
is the number of individuals. In the presence of additional heterogeneity across observations for
the same respondent, the likelihood becomes a cube of dimensions OxR1xR2, where in this third
dimension, different draws are used across different observations for the same individual. As de-
scribed by Hess and Train (2011), a given inter-individual draw is then associated with multiple
intra-individual draws. If only intra-individual heterogeneity is used, the cube collapses to an ar-
ray of dimensions Ox1xR2, i.e. a matrix but with columns going into the third dimension rather
than second dimension. Depending on the type of heterogeneity (inter and inter) present in the
model, different operations are required in terms of averaging across draws and multiplying across
choices, and we discuss these in detail in our example below.

A number of guidelines are appropriate at this stage:

• If a user has panel data, i.e. multiple observations for at least some of the individuals,
inter-individual draws are used for variation across individuals, and intra-individual draws
for variation across observations for the same individual.

• If a user has cross-sectional data, i.e. only one observation per individual, only inter-
individual draws should be used.

• If a user has panel data, but uses panelData=FALSE in apollo_control, the data will be
treated as cross-sectional, and only inter-individual draws should be used.

6.1.2 Example model specification

In what follows, we show the specification of a MMNL model with various levels of heterogeneity
on the route choice data described in Section 3.2. We specify the utility of alternative j for
individual n in choice situation t in willingness to pay space as:

Vn,j,t = δj + βTC,n (βV TT,n,tTTn,j,t + TCn,j,t + βV HW,nHWn,j,t + βV CHCHn,j,t) , (6.11)

where TTn,j,t, TCn,j,t, HWn,j,t and CHn,j,t refer to the travel time, travel cost, headway and
interchanges attributes, respectively, for alternative j in choice situation t for individual n. The
treatment in terms of deterministic and random heterogeneity differs across the various paramet-
ers, as we will now explain in turn:

• Alternative specific constants (ASC) are included to capture any left-right bias in the sur-
vey, where we set δ2 = 0 for normalisation. No random or deterministic heterogeneity is
incorporated for δ1.

Chapter 6. Incorporating random heterogeneity 69

• The travel cost coefficient βTC,n multiplies the entire remainder of the utility function,
meaning that our model produces direct estimates of willingness-to-pay (WTP) measures
through working in WTP space (Train and Weeks, 2005). We use a negative log-uniform
distribution (cf. Hess et al., 2017) for this coefficient, capturing inter-individual heterogeneity
only, with

βTC,n = −exp
(
alog(βTC) + blog(βTC) · ξtc,n

)
, (6.12)

where ξtc,n follows a uniform distribution across individuals (but is constant across choices
for the same individual), and alog(βTC) and blog(βTC) are the offset and range, respectively,
for the Uniform distribution used for the log of βTC .

• The value of travel time parameter βV TT,nt gives a direct estimate of the monetary valuation
of travel time (VTT). We use a very flexible distribution for this coefficient. We begin
with a lognormal distribution at the inter-individual level, but add additional heterogeneity
across choices for the same individual, a semi non-parametric term to allow for deviation
from the lognormal distribution at the individual level (Fosgerau and Mabit, 2013), and a
deterministic multiplier to allow for differences between business and non-business travellers.
We have:

βV TT,n,t = exp[µlog(βV TT)

+ σlog(βV TT),inter · ξtt,n
+ σlog(βV TT),inter,2 · ξ

2
tt,n

+ σlog(βV TT),intra · ξtt,nt]
· (γV TT,business · xbusiness,n + (1− xbusiness,n)) , (6.13)

where µlog(βV TT) is the estimated mean for the log of βV TT , σlog(βV TT),inter and
σlog(βV TT),inter,2 are the standard deviation and first additional Fosgerau and Mabit (2013)
polynomial term at the inter-individual level, multiplying the inter-individual level stand-
ard normally distributed ξtt,n error term and its square, respectively, and σlog(βV TT),intra
captures additional intra-individual heterogeneity by multiplying a standard normally dis-
tributed error term which also varies observations for the same individual, ξtt,nt. Finally
γV TT,business is a multiplier for business travellers, for whom xbusiness,n = 1. The subscript
t on βV TT,n,t reflects the fact that βV TT is distributed across individuals and across choices.

• The value of headway parameter βV HW,n again follows a lognormal distribution only at the
inter-individual level, but with correlation with the inter-individual heterogeneity in the
value of travel time parameter βV TT,nt, such that:

βV HW,n = exp
(
µlog(βVHW) + σlog(βVHW) · ξhw,n + σlog(βVHW ,βV TT) · ξtt,n

)
, (6.14)

where ξhw,n again follows a standard Normal distribution across individuals, and where the
reuse of ξtt,n from the βV TT,nt definition allows us to capture correlation betwen βV HW,n
and βV TT,nt through the estimate σlog(βVHW ,βV TT). If the parameter σlog(βVHW ,βV TT) is
positive , we get positive correlation between the distribution of βV TT,n,t and βV HW,n,

Chapter 6. Incorporating random heterogeneity 70

meaning that people who are more sensitive to travel time are also more sensitive to head-
way, and vice versa, while a negative estimate would imply negative correlation, meaning
that people who are more sensitive to travel time are less sensitive to headway, and vice
versa. The actual correlation is complicated in this case because of the semi-non parametric
term and the lognormals, but can be calculated empirically from the draws produced by
apollo_unconditionals.

• The value of interchanges parameter βV CH is estimated without any heterogeneity, hence
the lack of subscript.

We use this highly complex specification with a view to illustrating both the flexibility of the
code and the ease of implementation of complex models.

6.1.3 Implementation

We explain the implementation of the model from Section 6.1.2 in four simple steps. We do not
revisit obvious steps such as the definition of parameters to estimate. The model is implemented in
Apollo_example_16.r, with simpler Mixed Logit models also available in Apollo_example_14.r
and Apollo_example_15.r.

Settings
The first step is to set mixing=TRUE in apollo_control. This setting is a requirement for using

continuous random heterogeneity. A user may additionally set nCores to a value larger than 1 in
apollo_control, a point we return to in Section 6.4. We would thus for example have:

apollo_control = list(modelName = "Apollo_example_16",
...

mixing = TRUE,

nCores = 3)

Draws
The second step concerns the generation of draws for random distributions. In our case, we

need to produce uniformly distributed inter-individual draws for ξtc,n, normally distributed inter-
individual draws for ξtt,n and ξhw,n, and normally distributed intra-individual draws for ξtt,n,t.
Draws are generated by Apollo whenever mixing==TRUE in apollo_control, using the settings
defined in a list called apollo_draws. This process happens during apollo_validateInputs.
The setup used for this is illustrated in Figure 6.1.

In apollo_draws, the user needs to create settings for the type of draws, both for inter
(interDrawsType) and intra-individual (intraDrawsType) draws. Seven pre-defined types of
draws are available in Apollo, namely:

pmc for pseudo-Monte Carlo draws;
halton for Halton draws Halton (1960), not recommended for more than five random coeffi-
cients, (cf. Bhat, 2003);

Chapter 6. Incorporating random heterogeneity 71

apollo_draws = l i s t (
interDrawsType = "halton " ,
interNDraws = 100 ,
interUni fDraws = c (" draws_tc_inter ") ,
interNormDraws = c (" draws_hw_inter " ," draws_tt_inter ") ,
intraDrawsType = "mlhs " ,
intraNDraws = 100 ,
intraUnifDraws = c () ,
intraNormDraws = c (" draws_tt_intra ")

)

Figure 6.1: Defining settings for generation of draws

mlhs for MLHS draws (Hess et al., 2006);
sobol for Sobol draws (Sobol’, 1967);
sobolOwen for Sobol draws with Owen scrambling (Owen, 1995);
sobolFaureTezuka for Sobol draws with Faure-Tezuka scrambling (Faure and Tezuka, 2000);
and
sobolOwenFaureTezuka for Sobol draws with both Owen and Faure-Tezuka scrambling

While the type of draws used can differ between the inter and intra-individual sets of draws,
multiple sets of draws within either category (i.e. inter or intra) will come from the same type.
In our case, we use Halton draws for the inter-individual draws and MLHS draws for the intra-
individual draws. The use of Halton draws is possible here given the low number of random
coefficients, but Halton draws are not advised for more than 5 random coefficients given colinearity
issues (cf. Bhat, 2003). When using the same type of draws for both inter and intra-individual
draws, different parts of the sequence (e.g. primes for Halton) are used for the two types.

The user needs to next specify how many draws are to be used per individual for inter-
individual draws, and per observation for intra-individual draws. This is set via interNDraws and
intraNDraws, respectively. The number can differ between these two dimensions of integration.
We use 100 inter-individual draws per parameter and per individual, and 100 intra-individual
draws per parameter and per choice situation. If only inter-individual draws are to be used, then
a setting of intraNDraws = 0 is used, with a corresponding approach for intra-individual draws
only. Alternatively, these settings can be omitted by the user.

Finally, the user needs to define the actual random disturbances or sets of draws, by giving each
set of draws a name which can be used later in the model specification, and by determining whether
the draws are Normally or Uniformly distributed, by including their names in interNormDraws
and interUnifDraws, respectively, in the case of inter-individual draws, and intraNormDraws
and intraUnifDraws, respectively, in the case of intra-individual draws. These two distributions
(standard Normal and Uniform between 0 and 1) are used as the base for any other distributions
later in the code. All the draws in our example follow standard Normal distributions, except
ξtc,n, which comes from a Uniform distribution between 0 and 1. A user can either specify empty
vectors for any settings that are not in use, such as intraUnifDraws = c() in our case, or omit
these settings entirely.

Some users may want additional flexibility to combine different types of draws or to generate
their own draws. This is possible in Apollo by giving the name of a user generated object in

Chapter 6. Incorporating random heterogeneity 72

apollo_draws$interDrawsType and/or apollo_draws$intraDrawsType instead of providing one
of the seven specific types of draws listed above. Using the example from Figure 6.1, let us assume
the user wants to provide his/her own draws for inter-individual mixing, but continue to use the
Apollo generated MLHS draws for intra-individual mixing. In that case, the user needs to replace
halton by for example ownInterDraws, where this is a list, with one element per random set
of draws. Each entry in the list needs to have a name, where this same set of names is then
used across interUnifDraws and interNormDraws to instruct the code to either leave the draws
untransformed or apply an inverse Normal CDF. The draws provided in the list ownInterDraws
should thus be uniformly distributed. The user also still needs to specify interNDraws and
intraNDraws. Each element of the list of draws provided by the user (ownInterDraws in our
example) should be a matrix containing the user-generated draws. In the case of inter-individual
draws, each matrix must have one row per individual in the database and interNDraws columns,
while, for intra-individual draws, the matrix must have one row per observation in the database,
and intraNDraws columns.

Random coefficients
The third step concerns the actual definition of those coefficients in the model that fol-

low a random distribution. For this, the code includes an additional function defined
outside the apollo_probabilities function, namely apollo_randCoeff. Just as with
apollo_probabilities, this is a function that the user does not call but which the user defines.
apol lo_randCoef f = func t i on (apollo_beta , apo l lo_inputs) {

randcoe f f = l i s t ()

r andcoe f f [[" b_tc "]] = −exp (mu_log_b_tc
+ sigma_log_b_tc_inter ∗ draws_tc_inter)

r andcoe f f [[" v_tt "]] = (exp (mu_log_v_tt
+ sigma_log_v_tt_inter ∗ draws_tt_inter
+ sigma_log_v_tt_inter_2 ∗ draws_tt_inter ^ 2
+ sigma_log_v_tt_intra ∗ draws_tt_intra)

∗ (gamma_vtt_business ∗ bus ine s s + (1 − bus ine s s)))

r andcoe f f [[" v_hw"]] = exp (mu_log_v_hw
+ sigma_log_v_hw_inter ∗ draws_hw_inter
+ sigma_log_v_hw_v_tt_inter ∗ draws_tt_inter)

re turn (randcoe f f)
}

Figure 6.2: The apollo_randCoeff function
This function takes apollo_beta and apollo_inputs as inputs and generates a new list which

contains the random coefficients, incorporating any deterministic effects too. This step is shown in
Figure 6.2, where the correspondence with Equations 6.12 to 6.14 should be clear. The contents of
apollo_randCoeff will vary across model specifications, only the first line (randCoeff = list())
and final line (return(randCoeff)) are to remain as in the example.

Model definition
The final step consists of adapting the apollo_probabilities function to work with random

coefficients. This step is in essence the easiest as the writing of the utility functions and prob-
abilities is equivalent to the approach used in the models without random heterogeneity. This is

Chapter 6. Incorporating random heterogeneity 73

possible thanks to having defined the actual random coefficients in the apollo_randCoeff func-
tion which means that the user can now simply use the elements contained in the randCoeff
list.
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Function i n i t i a l i s a t i o n : do not change the f o l l ow ing three commands
Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ()
V[[' a l t1 ']] = asc_1 + b_tc ∗(v_tt∗ t t1 + tc1 + v_hw∗hw1 + v_ch∗ch1)
V[[' a l t2 ']] = asc_2 + b_tc ∗(v_tt∗ t t2 + tc2 + v_hw∗hw2 + v_ch∗ch2)

Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t (a l t 1 =1, a l t 2=1) ,
choiceVar = choice ,
V = V

)

Compute p r o b a b i l i t i e s us ing MNL model
P [[' model ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Average ac ro s s int ra−i n d i v i dua l draws
P = apollo_avgIntraDraws (P, apol lo_inputs , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Average ac ro s s in t e r−i n d i v i dua l draws
P = apollo_avgInterDraws (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 6.3: The apollo_probabilities function for a MMNL model

We illustrate this in Figure 6.3. As we can see, we still define the model as MNL, as this
is the model structure conditional on the random coefficients. The only distinction with the
earlier MNL example is that we make calls to two additional functions towards the end of
apollo_probabilities. In the MNL example in Figure 4.7, we made a call to apollo_panelProd,
which takes the product across choices for the same individual, before preparing the probabilit-
ies for output using apollo_prepareProb. In our MMNL model, the probabilities are however
not now given by a vector with one value per choice task, but a cube with one colum per inter-
individual draw in the second dimension, and one colum per intra-individual draw in the third
dimension. The actual log-likelihood function for our model is thus given by:

L (Ω) =
N∏
n=1

∫
ξtc,n

∫
ξtt,n

∫
ξhw,n

Tn∏
t=1

∫
ξtt,n,t

Pj∗n,tdξtt,n,tdξhw,nd, ξtt,ndξtc,n, (6.15)

The two layers of integration need to be approximated using numerical simulation, where
different functions are used for simulation at the inter-individual and intra-individual level. These

Chapter 6. Incorporating random heterogeneity 74

two functions, apollo_avgIntraDraws() and apollo_avgInterDraws are called as:

P = apollo_avgIntraDraws(P,

apollo_inputs,
functionality)

and

P = apollo_avgInterDraws(P,

apollo_inputs,
functionality)

In our example, we first average across intra-individual draws, using apollo_avgIntraDraws.
We then take the product over choices, using apollo_panelProd, before averaging across the
inter-individual draws using apollo_avgInterDraws to obtain a column vector once again, with
one row per individual. We finally call apollo_prepareProb.

While the example here is for a MMNL model, i.e. a mixture of a MNL kernel, it is similarly
possible to use for example a Mixed Nested Logit model, and in Apollo, this is straightforward by
replacing apollo_mnl with apollo_nl and defining appropriate additional arguments.

6.1.4 Estimation

The estimation of a continuous Mixed Logit model uses the same routine apollo_estimate
as our other models, and the code automatically finds the draws and random coefficients in
apollo_inputs. This is illustrated in Figure 6.4, where we use 3 cores in estimation, and where
the use of a MNL kernel inside the MNL model is made clear by the output.

6.1.5 Error components

The main focus when using random parameters in choice models is to introduce heterogeneity
in sensitivities to individual attributes. However, random parameters can similarly be used as
“error components”, with a view to introducing for example heteroskedasticity or correlation across
alternatives. An introduction to the use of error components is given in Train (2009, chapter 6.3).
With error components, special care is required in relation to identification and normalisation, an
issue ignored by many and discussed in detail by Walker et al. (2007).

The use of error components is straightforward in Apollo, and simply involves the use of
random parameters that do not multiply an attribute2. We show two examples of code here, one
of them for introducing heteroskedasticity, and the other for capturing the so called pseudo panel
effect.

Let us assume we wanted to extend the example in Section 6.1.2 by allowing for heteroske-
dasticity in the utility for the first alternative, where this is at the level of an individual rather

2This is the traditional use of error components, although there are also cases where error components multiply
attributes, such as in Hess et al. (2007b)

Chapter 6. Incorporating random heterogeneity 75

> model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Test ing l i k e l i h o o d func t i on . . .

Overview o f cho i c e s f o r MNL model component :
a l t 1 a l t 2

Times ava i l a b l e 3492.00 3492.00
Times chosen 1734.00 1758.00
Percentage chosen o v e r a l l 49 .66 50 .34
Percentage chosen when ava i l a b l e 49 .66 50 .34

Pre−proc e s s i ng l i k e l i h o o d func t i on . . .
Preparing workers f o r mul t i thread ing . . .

Test ing i n f l u e n c e o f parameters
S ta r t i ng main es t imat ion
I n i t i a l f unc t i on value : −2406.92
I n i t i a l g rad i ent value :

asc_1 mu_log_b_tc sigma_log_b_tc_inter mu_log_v_tt
−12.81823643 −15.52002504 −7.78667663 11.50106846

sigma_log_v_tt_inter sigma_log_v_tt_inter_2 sigma_log_v_tt_intra mu_log_v_hw
−0.10508620 11.27132782 −0.04135154 33.79959253

sigma_log_v_hw_inter sigma_log_v_hw_v_tt_inter v_ch gamma_vtt_business
−0.06491518 0.12617193 44.46988351 5.22909841

i n i t i a l va lue 2406.919551
i t e r 2 value 2383.868879
. . .

Figure 6.4: Running apollo_estimate for MMNL using 3 cores

than an observation. This involves adding a N(0, σhsk) term to the first utility. We show only
those parts of the affected code in Figure 6.5, where any other lines remain as in Figures 6.1 to
6.3, and where we do not show the apollo_beta section which will now include the definition
of the new parameter sigma_hsk. The user needs to create a new set of draws and a random
component that creates the N(0, σhsk) term, called ec in our example, which is then added to the
utility of the first alternative.
apollo_draws = l i s t (

. . .
interNormDraws = c (" draws_hw_inter " ," draws_tt_inter " ,"draws_hsk") ,
. . .

)

apol lo_randCoef f = func t i on (apollo_beta , apo l lo_inputs) {
. . .
randcoeff[["ec"]] = sigma_hsk * draws_hsk
. . .

}

ap o l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {
. . .
V[[' a l t1 ']] = asc_1 + b_tc ∗(v_tt∗ t t1 + tc1 + v_hw∗hw1 + v_ch∗ch1) + ec
. . .

}

Figure 6.5: Using error components for heteroskedasticity

Another popular use of error components aims to capture an individual-specific effect that
creates correlation across choices for the same respondent, the so called pseudo-panel effect. It is
clearly impossible for identification reasons to add the same error components to all J alternatives.
As for example reported by Yáñez et al. (2011), it has become common practice to instead include
the same error component in J − 1 of the utility functions. Unfortunately, such a specification
now introduces correlation across those J − 1 alternatives, as well as heteroskedasticity. Adding

Chapter 6. Incorporating random heterogeneity 76

an error component to just a single alternative is no better, while randomly varying the omitted
error component across respondents (cf. Yáñez et al., 2011) is also problematic, as it creates
random variations in the correlation and/or heteroskedasticity structure across individuals. An
alternative is to use an approach first put forward by Hess et al. (2008) which consists of adding
iid (across respondents but not observations) error components to all of the alternatives, where
this model is identified in panel data given the independent nature of the error components.
We illustrate this process in Figure 6.6, again based on the example from Section 6.1.2. We
now require two separate sets of draws, and create two independently but identically distributed
N(0, σpanel) terms in apollo_randCoeff. These use different draws for each error component,
but the same parameter sigma_panel for the standard deviation. One term is then included in
each utility function.
apollo_draws = l i s t (

. . .
interNormDraws = c (" draws_hw_inter " ," draws_tt_inter " ,"draws_panel_1","draws_panel_2") ,
. . .

)

apol lo_randCoef f = func t i on (apollo_beta , apo l lo_inputs) {
. . .
randcoeff[["ec1"]] = sigma_panel * draws_panel_1
randcoeff[["ec2"]] = sigma_panel * draws_panel_2
. . .

}

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {
. . .
V[[' a l t1 ']] = asc_1 + b_tc ∗(v_tt∗ t t1 + tc1 + v_hw∗hw1 + v_ch∗ch1) + ec1
V[[' a l t2 ']] = asc_2 + b_tc ∗(v_tt∗ t t2 + tc2 + v_hw∗hw2 + v_ch∗ch2) + ec2
. . .

}

Figure 6.6: Using error components for a pseudo-panel effect

6.2 Discrete mixtures and Latent Class

Apollo offers the same degree of flexibility with Latent Class and Discrete Mixture models as with
continuous mixture models. Unlike with continuous mixtures, the α parameters in CNL, the σ
parameters in MDCEV, and the θ parameters in MDCNEV can also vary across classes.

In a Latent Class model, heterogeneity is accommodated by making use of separate classes
with different values for the vector β in each class. With S classes, we have S instances of β, say
β1 to βS , with the possibility of some elements staying fixed across some classes. Individual n
belongs to class s with probability πn,s, where 0 ≤ πn,s ≤ 1 ∀s and

∑S
s=1 πn,s = 1.

Let Pi,n,t (βs) give the probability of respondent n choosing alternative i in choice situation t,
conditional on n falling into class s, where Pi,n,t is typically specified as a MNL model, but this is
not a requirement in theory or in Apollo. Indeed, there is now a substantial body of work using
different model structures (often based on different decision rules) in different classes (cf. Hess
et al., 2012).

Chapter 6. Incorporating random heterogeneity 77

The unconditional (on s) choice probability is then given by:

Pi,n,t (β1, . . . , βS) =
S∑
s=1

πn,s Pi,n,t (βs) (6.16)

In the presence of repeated choice data, it is natural to perform the mixing at the level of individual
people, and we then have that the probability of the sequence of choices/observations for person
n is given by:

Ln (β) =
S∑
s=1

πn,s

Tn∏
t=1

Pj∗n,t (βs) (6.17)

where β = 〈β1, . . . , βS〉, and where j∗n,t gives the alternative chosen by person n in choice situation
t.

In the most basic version, the class allocation probabilities πn,s are constant across respondents,
i.e. πn,s = πs ∀n. The real flexibility of the model arises when linking class allocation to socio-
demographics, where we use a class allocation model, with typically an underlying Logit structure,
such that:

πn,s =
eδs+g(γs,zn)∑S
l=1 e

δl+g(γl,zn)
, (6.18)

where δs is an offset, and γs is a vector of parameters capturing the influence of the vector of
individual characteristics zn on the class allocation probabilities. For normalisation, δs is fixed to
0 for one of the S classes, as is γs. In a model with constant class allocation probabilities across
individuals, we would only estimate the vector of constants δ.

To illustrate the implementation of Latent Class models in Apollo, we provide an example on
the Swiss route choice data also used for the Mixed Logit model in Section 6.1.2. We develop
a model with two classes, where all four marginal utility parameters (time, cost, headway and
interchanges) vary across the classes, but where the ASCs are kept fixed across classes. For
the class allocation model, we use two socio-demographic characteristics, namely whether an
individual was on a commute journey or not, and whether they had a car available to them. This
example is implemented in Apollo_example_20.r, where a simpler Latent Class model without
covariates is available in Apollo_example_18.r.

The development of a Latent Class model in Apollo consists of two steps, which we now look
at it turn.

Defining Latent Class parameters
We first implement a function called apollo_lcPars, which performs a role analogous to

apollo_randCoeff for continuous mixtures. This is thus another function that is not called
by the user but which is developed by the user for the specific model that is to be used. Like

Chapter 6. Incorporating random heterogeneity 78

apollo_randCoeff, this function takes apollo_beta and apollo_inputs as inputs and generates
a new list which contains the parameters that vary across classes as well as the class allocation
probabilities. The contents of apollo_lcPars will vary across model specifications, only the first
line (lcPars = list()) and final line (return(lpars)) are to remain as in the example.

The implementation for our example is shown in Figure 6.7. We create a list called lcPars
which contains the values for the different parameters across classes, as well as the class allocation
probabilities. As can be seen from Figure 6.7, we first produce one element in the list for each of
the four marginal utility coefficients. Each one of these elements is a list in itself, and contains
the values for the coefficients across the two classes. If more classes are to be used, more entries
are added into each one of these lists, where the possibility exists of keeping the values constant
for some parameters across some or all of the classes (in which case the number of values still
needs to be the same as the number of classes, but some of them are repeated). Note that for
parameters that are kept constant across all (i.e. not just some) of the classes, such as the ASCs
in our example, there is no need (though also no harm) to include them in lcPars.
apo l lo_lcPars=func t i on (apollo_beta , apo l lo_inputs) {

l c pa r s = l i s t ()
l c pa r s [[" beta_tt "]] = l i s t (beta_tt_a , beta_tt_b)
l c pa r s [[" beta_tc "]] = l i s t (beta_tc_a , beta_tc_b)
l c pa r s [[" beta_hw "]] = l i s t (beta_hw_a , beta_hw_b)
l cpa r s [[" beta_ch "]] = l i s t (beta_ch_a , beta_ch_b)

V=l i s t ()
V[[" c lass_a "]] = delta_a + gamma_commute_a∗commute + gamma_car_av_a∗ c a r_ava i l a b i l i t y
V[[" class_b "]] = delta_b + gamma_commute_b∗commute + gamma_car_av_b∗ c a r_ava i l a b i l i t y

mnl_sett ings = l i s t (
a l t e r n a t i v e s = c (c lass_a=1, class_b=2) ,
a v a i l = 1 ,
choiceVar = NA,
V = V

)
l cpa r s [[" pi_values "]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y="raw")

l c pa r s [[" pi_values "]] = apol lo_f i r s tRow (l cpa r s [[" pi_values "]] , apo l lo_inputs)

re turn (l c pa r s)
}

Figure 6.7: The apollo_lcPars function
We next calculate the class allocation probabilities, i.e. πn,s, ∀n, s. We use a MNL model

for the class allocation probabilities, and thus produce utility functions for the two classes. The
utility for the second class could in our case simply be set to 0 as the parameters are all normalised
to 0 in apollo_fixed. We then use the apollo_mnl function to calculate the probabilities, with
two alternatives which are always both available (hence avail=1). Two points need noting here.
First, unlike in other applications of the in-built functions, we now explicitly use the functionality
raw when calling apollo_mnl - this ensures that the probabilities are returned for all alternatives,
or in this case all classes. When using raw, we also do not need to define the chosen alternative,
and thus set choiceVar=NA.

At this point, we obtain a value for the probability for the two classes for each row in the data.
However, for the calculation in Equation 6.17, we require the class allocation probabilities at the
individual rather than observation level, i.e. πn,s. This is achieved by running the additional
function apollo_firstRow on the part of lcPars containing the class allocation probabilities.
This is a general function that can be applied to probabilities, data elements, etc. In particular,

Chapter 6. Incorporating random heterogeneity 79

by calling:

x = apollo_firstrow(x,

apollo_inputs)

we replace x by a version where only the first entry for each individual is re-
tained. The object x can be a vector, matrix or cube. In our example, calling
apollo_firstrow(lcPars[["pi_values"]],apollo_inputs) retains the first row in each ele-
ment of lcPars[["pi_values"]] for each individual.

Model definition
We next turn to the calculation of the actual Latent Class choice probabilities, a process that

is illustrated in Figure 6.8. As can be seen, we first create a generic version of mnl_settings that
contains those settings which will be constant across classes, namely the alternatives, availabilities
and choice variable.
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Def ine s e t t i n g s f o r MNL model component that are g ene r i c a c ro s s c l a s s e s
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t (a l t 1 =1, a l t 2=1) ,
choiceVar = cho i c e

)

Loop over c l a s s e s
f o r (s in 1 : l ength (pi_values)) {

Compute c l a s s−s p e c i f i c u t i l i t i e s
V=l i s t ()
V[[' a l t1 ']] = asc_1 + beta_tc [[s]] ∗ tc1 + beta_tt [[s]] ∗ t t1 + beta_hw [[s]] ∗ hw1 + beta_ch [[s]] ∗ ch1
V[[' a l t2 ']] = asc_2 + beta_tc [[s]] ∗ tc2 + beta_tt [[s]] ∗ t t2 + beta_hw [[s]] ∗ hw2 + beta_ch [[s]] ∗ ch2

mnl_settings$V = V
mnl_settings$componentName = paste0 (" Class_ " , s)

Compute within−c l a s s cho i c e p r o b a b i l i t i e s us ing MNL model
P [[paste0 (" Class_ " , s)]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P [[paste0 (" Class_ " , s)]] = apollo_panelProd (P [[paste0 (" Class_ " , s)]] , apo l lo_inputs , f u n c t i o n a l i t y)

}

Compute l a t en t c l a s s model p r o b a b i l i t i e s
l c_s e t t i n g s = l i s t (inClassProb = P, c las sProb=pi_values)
P [[" model "]] = apo l l o_lc (l c_se t t ing s , apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 6.8: Implementing choice probabilities for Latent Class

We then incorporate a loop over classes (where the number of classes is given by the number of
entries in pi_values), where we calculate the utilities for the two alternatives in each class, using
the appropriate values for those parameters that vary across classes. In each class, we update

Chapter 6. Incorporating random heterogeneity 80

mnl_settings to use the utilities in that specific class, and we also define a name for each class in
the componentName setting, where we use the paste0 function in R to combine the string Class_
with the index for the class. This step is not compulsory but helps with interpreting the outputs.
We finally create one element in the P list for each class, where we again give these a name using
paste0 rather than just an index. Again, this is not compulsory, and if a simple index is given (i.e.
using P[[s]]), the class-specific fits will be referred to as component_1, component_2, etc. The
reader will note that in class s, we are using the coefficients for that class (e.g. beta_tc[[s]] uses
the sth element in beta_tc created in apollo_lcPars), and the call to apollo_mnl in each class
uses the appropriate utilities for that class as these are updated inside the overall mnl_settings
using mnl_settings$V = V in each step of the loop. In our example, we calculate the within
class probabilities using a MNL model, where it would again also be possible to use different
models inside the Latent Class structure, e.g. Nested Logit. In preparation for the averaging
across classes, we take the product across choices for the same individual in each class, using
apollo_panelProd, in line with Equation 6.17.

We now have the likelihoods in each class, i.e. for class s, we have Ln,s =
∏Tn
t=1 Pj∗n,t (βs). The

remaining step is to take the weighted average across classes, i.e.
∑S

s=1 πn,sLn,s. This is achieved
by the apollo_lc function, which uses the within class probabilities contained in the S existing
elements of P, multiplies each one by the appropriate class allocation probability in pi_values,
and then sums across classes. This function is called as:

P[["model"]] = apollo_lc(lc_settings,
apollo_inputs,
functionality)

The list lc_settings contains two elements, namely:

inClassProb: A list of in class probabilities, i.e. the Ln,s for different classes. These need
to already have all continuous random heterogeneity averaged out and contain one entry per
individual, i.e. having been multiplied across observations for the same individual.

classProb: A list of class allocation probabilities, which can be either scalars (if constant across
people), vectors (if using only deterministic heterogeneity) or matrices or cubes (if including
continuous random heterogeneity in the class allocation probabilities, a point we return to in
Section 6.3).

The output from this function is the actual Latent Class model probability in Equation 6.17
and is stored in the model component of the list P.

One final point to note here relates to the class specific model components. In the discussion
here, the probabilities for individual classes are stored inside P, in our case as P[["Class_1"]]
and P[["Class_2"]], while the probability for the model is stored in P[["model"]]. The output
from model estimation will then also report the log-likelihood from the individual classes. When
using a Latent Class model inside a hybrid structure, the within-class probabilities should however
be stored in a separate list from P, a point we return to in Section 7.

Chapter 6. Incorporating random heterogeneity 81

The focus in our discussion so far has been on Latent Class models rather than Discrete
Mixtures (cf. Hess et al., 2007a). In a Discrete Mixture model, we have Sk values for parameter
βk, where the number of possible values Sk can vary across parameters (and can be 1 for some).
A weight πn,k,s is assigned to the sth value for βk for person n, with

∑Sk
s=1 πn,k,s = 1, ∀n, k. We

thus have
∑K

k=1 Sk possible values across the K different β parameters, and each combination is
possible in the model. This effectively means that the Discrete Mixture model can be written as
a Latent Class model with

∏K
k=1 Sk classes, where, for example, the first class might use the first

value for each of the coefficients, and thus have a class allocation probability π∗n,s =
∏K
k=1 πn,k,1.

Discrete mixtures can thus be estimated using software for Latent Class, including in Apollo, and
an example is given in Apollo_example_19.r. The use of Discrete Mixture models leads to a
larger number of parameters, as we now have separate πn,k,s for different β parameters, as well as
generally a larger number of overall classes (and hence a more complex likelihood function) given
that S∗ =

∏K
k=1 Sk. Latent class models also provide a more natural way of capturing correlation

in the heterogeneity across different coefficients.

6.3 Combining Latent Class with continuous random heterogen-
eity

Apollo also allows users to combine continuous random heterogeneity with Latent Classes (cf.
Greene and Hensher, 2013). Continuous heterogeneity can be allowed for both in the within-class
probabilities and in the class membership probabilities. Specifically, let us assume that the vector
π is distributed according to f (π | Ωπ) where Ωπ is a vector of parameters, while the vector βs,
which contains the parameters for the within-class model in class s is distributed according to
gs (βs | Ωβs), where Ωβs is a vector of parameters, and where Ωβ = 〈Ωβ1 , ...,ΩβS 〉. We then have:

Ln (Ωπ,Ωβ) =

∫
π

S∑
s=1

πn,s

(∫
βs

Tn∏
t=1

Pj∗n,t (βs) gs (βs | Ωβs) dβs

)
f (π | Ωπ) dπ. (6.19)

The integration across the distribution for heterogeneity in the within-class model is thus carried
out prior to averaging across classes, while the integration across the distribution for heterogeneity
in the class-allocation model is carried out outside the averaging across classes. For estimation,
this implies averaging across draws in two distinct places, as we will now illustrate.

We extend the model from Section 6.2 by allowing the travel time coefficient to follow a
negative lognormal distribution, with separate parameters in the two classes. In addition, we
allow the constant in the class allocation model for the first class, i.e. δa, to follow a Normal
distribution. The specification of the random parameters is illustrated in Figure 6.9, and is
available in Apollo_example_21.r.

We have that draws_tt and draws_pi are standard Normal draws defined in apollo_draws
(not shown here). We use a negative Lognormal distribution for tt_a and tt_b, and a Normal
distribution for delta_a. These random time coefficients are then also used inside apollo_lcPars
when defining lcPars[["tt"]], while the randomly distributed delta_a is used when defining
V[["class_a"]].

Chapter 6. Incorporating random heterogeneity 82

apol lo_randCoef f = func t i on (apollo_beta , apo l lo_inputs) {
randcoe f f = l i s t ()

r andcoe f f [[" tt_a "]] = −exp (log_tt_a_mu + log_tt_a_sig∗draws_tt)
r andcoe f f [[" tt_b "]] = −exp (log_tt_b_mu + log_tt_b_sig∗draws_tt)
r andcoe f f [[" delta_a "]] = delta_a_mu + delta_a_sig∗draws_pi

return (randcoe f f)
}

apo l lo_lcPars = func t i on (apollo_beta , apo l lo_inputs) {
l c pa r s = l i s t ()
l c pa r s [[" t t "]] = l i s t (tt_a , tt_b)
l c pa r s [[" tc "]] = l i s t (tc_a , tc_b)
l c pa r s [[" hw"]] = l i s t (hw_a, hw_b)
l cpa r s [[" ch "]] = l i s t (ch_a , ch_b)

V=l i s t ()
V[[" c lass_a "]] = delta_a + gamma_commute_a∗commute + gamma_car_av_a∗ c a r_ava i l a b i l i t y
V[[" class_b "]] = delta_b + gamma_commute_b∗commute + gamma_car_av_b∗ c a r_ava i l a b i l i t y

mnl_sett ings = l i s t (
a l t e r n a t i v e s = c (c lass_a=1, class_b=2) ,
a v a i l = 1 ,
choiceVar = NA,
V = V

)
l cpa r s [[" pi_values "]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y="raw")

l c pa r s [[" pi_values "]] = apol lo_f i r s tRow (l cpa r s [[" pi_values "]] , apo l lo_inputs)

re turn (l c pa r s)
}

Figure 6.9: The apollo_randCoeff and apollo_lcPars functions for a Latent Class model with
continuous random heterogeneity

The definition of the model probabilities differs from that of the simple Latent Class model
in Figure 6.8 in only two ways. In particular, as seen in Figure 6.10, in line with Equa-
tion 6.19, we now average across the random draws in the within class likelihoods via P[[s]]
= apollo_avgInterDraws(P[[s]],apollo_inputs,functionality), after taking the product
across observations for the same individual using apollo_panelProd. This gives one likelihood
for the observed choices for each person within each class. We then perform the weighted
summation across classes using P[["model"]] = apollo_lc(lc_settings, apollo_inputs,
functionality). As pi_values again incorporates random terms, we now have a version of
the combined model likelihood for each draw for each individual. As a final step ,we then aver-
age across the continuous heterogeneity in the class allocation probabilities, using P[["model"]]
= apollo_avgInterDraws(P[["model"]], apollo_inputs, functionality) to again give one
value per person.

6.4 Multi-threading capabilities

Apollo allows for multi-threaded estimation for classical estimation3, leading to significant estim-
ation speed improvements for some models. This can easily be activated by specifying the number
of threads to use in apollo_control$nCores. The recommended number of threads is equal to

3When using Bayesian estimation, the reliance on RSGHB means only single core processing is possible.

Chapter 6. Incorporating random heterogeneity 83

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Def ine s e t t i n g s f o r MNL model component that are g ene r i c a c ro s s c l a s s e s
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t (a l t 1 =1, a l t 2=1) ,
choiceVar = cho i c e

)

Loop over c l a s s e s
f o r (s in 1 : l ength (pi_values)) {

Compute c l a s s−s p e c i f i c u t i l i t i e s
V=l i s t ()
V[[' a l t1 ']] = asc1 + tc [[s]] ∗ tc1 + t t [[s]] ∗ t t1 + hw [[s]] ∗ hw1 + ch [[s]] ∗ ch1
V[[' a l t2 ']] = asc2 + tc [[s]] ∗ tc2 + t t [[s]] ∗ t t2 + hw [[s]] ∗ hw2 + ch [[s]] ∗ ch2

mnl_settings$V = V
mnl_settings$componentName = paste0 (" Class_ " , s)

Compute within−c l a s s cho i c e p r o b a b i l i t i e s us ing MNL model
P [[paste0 (" Class_ " , s)]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P [[paste0 (" Class_ " , s)]] = apollo_panelProd (P [[paste0 (" Class_ " , s)]] , apo l lo_inputs , f u n c t i o n a l i t y)

Average ac ro s s in t e r−i n d i v i dua l draws with in c l a s s e s
P [[paste0 (" Class_ " , s)]] = apol lo_avgInterDraws (P [[paste0 (" Class_ " , s)]] , apol lo_inputs , f u n c t i o n a l i t y

↪→)

}

Compute l a t en t c l a s s model p r o b a b i l i t i e s
l c_s e t t i n g s = l i s t (inClassProb = P, c las sProb=pi_values)
P [[" model "]] = apo l l o_lc (l c_se t t ing s , apol lo_inputs , f u n c t i o n a l i t y)

Average ac ro s s in t e r−i n d i v i dua l draws in c l a s s a l l o c a t i o n p r o b a b i l i t i e s
P [[" model "]] = apollo_avgInterDraws (P [[" model "]] , apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 6.10: Implementing choice probabilities for Latent Class with continuous random hetero-
geneity

the number of available processor cores in the machine minus one, which can be determined by
typing parallel::detectCores() in the R console. The use of multi-threaded estimation comes
with some restrictions.

apollo_probabilities can only access its arguments: In other words, the likelihood can
only use data stored inside apollo_beta and apollo_inputs, where the latter combines
database, apollo_control, draws, apollo_randCoeff and apollo_lcPars. All other vari-
ables created by the user in the global environment before estimation cannot be accessed.
This issue is easily avoided by creating any new variables inside the database object prior to
calling apollo_validateInputs, which is good practice anyway.
Data splitting: The dataset is split among several threads, so statistics such as the mean,
maximum and minimum of variables, among others, will not be reliably calculated during

Chapter 6. Incorporating random heterogeneity 84

estimation when using multi-threading. To avoid this issue, any such statistic (for example
the mean income in our MNL example in Section 4.2) need to be calculated before estimation
and saved as a new variable inside database4.
Increased memory consumption: Memory consumption is increased when using multi-
threading. This is because the dataset and draws (usually the biggest objects in memory)
need to split, and copied into several threads.
Speed gains are dependent on the model: In general, models using few iterations that
each take a long time will benefit the most. This applies to models using big datasets or
a large number of draws in the case of mixture models. Speed gains also decrease with the
number of threads used. For small models, speed gains due to multi-threading might be
negligible, or even negative due to overhead.

To help decide how many cores to use, we provide the function apollo_speedTest, which calcu-
lates the loglikelihood function several times using different number of threads and draws, and
reports both the calculation time and the memory usage. This function is called as:

apollo_speedTest(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
speedTest_settings)

The final argument, speedTest_settings, is optional and allows the user to change the following
settings:

nDrawsTry: A vector with the number of draws to try (default is c(100, 200, 500)). Note
that this may need to be reduced for very complex models if memory issues arise.

nCoresTry: A vector with the number of threads to try (default is to try all cores present in
the machine).

nRep: An integer setting the number of times apollo_probabilities is calculated for each
possible pair of elements from nDrawsTry and nCoresTry (default is 10), ensuring stable
results for the calculation of runtimes.

We illustrate the use of this function in Figure 6.11 for example apollo_example_16.r, which
shows a big benefit especially by using a second core. When running apollo_speedTest, progress
and results of the test are printed to the console. Each row displays the set-up, progress, and
results of a given configuration. The first column (nCores) indicates the number of computational
threads in use, i.e. how many processor cores are being used simultaneously by R. The second

4To illustrate this issue, in our earlier example in Section 4.5.2, we created a variable called
mean_income inside the database, prior to calling apollo_validateInputs, by calling database$mean_income =
mean(database$income). This ensures that with multi-threading, the same mean income would be used in each
core, while, if the variable had been created inside apollo_probabilities, a different mean income would have
been used across cores.

Chapter 6. Incorporating random heterogeneity 85

(inter) and third (intra) columns indicate the number of inter-individual and intra-individual
draws used. The third column (progress) indicates the progress of the test for each set-up, each dot
representing 10% of the repetitions requested. The fifth column (sec/LLCal) indicates the average
time in seconds required to complete one evaluation of the apollo_probabilities function. The
sixth and last column (RAM(MB)) presents a lower bound of the memory required to evaluate
the apollo_probabilities function. After completing the test, results are summarised in a table
indicating the time required to evaluate apollo_probabilities under each configuration, as well
as in a plot.
> speedTest_settings=list(nDrawsTry = c(50, 75, 100),nCoresTry = 1:3,nRep = 10)

> apollo_speedTest(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, speedTest_settings)

___Draws___ sec /
nCores i n t e r i n t r a prog r e s s LLCall RAM(MB)

1 50 50 1 .42 692 .8
2 50 50 0 .84 1217.6
3 50 50 0 .66 1346.7
1 75 75 4 .59 1025.8
2 75 75 2 .13 1883.6
3 75 75 1 .53 2012.8
1 100 100 6 .62 1492.0
2 100 100 4 .30 2816.0
3 100 100 4 .07 2945.2

Summary o f r e s u l t s (sec . per c a l l to LL func t i on)
draws50 draws75 draws100

core s1 1 .4235 4.5884 6.6190
core s2 0 .8409 2.1271 4.2973
core s3 0 .6619 1.5347 4.0708

Figure 6.11: Running apollo_speedTest

Chapter 7

Joint estimation of multiple model
components

The use of models made up of several separate components is made possible by the function
apollo_combineModels, which is called as follows:

P = apollo_combineModels(P,

apollo_inputs,
functionality,

components,

asList)

This function takes the list P which contains several individual model components and produces
a combined model. There is no limit on the number of subcomponents. The obvious case is
estimation, where, with Ln,m giving the likelihood of model component m for person n, the
overall likelihood for person n is given by Ln =

∏M
m=1 Ln,m (not showing here the presence

of any integration over random terms, which would be carried out outside the product). The
function apollo_combineModels creates the model object inside P as the product across individual
components - when working with multiple model components, the individual components should
thus not be called model themselves. The optional argument components allows the user to
instruct the function to only use a subset of the components, while the optional argument asList
(set to TRUE by default) allows the user to drop all components after taking the product (if
asList is set to FALSE).

The most widely used case in recent years of models with multiple components is that of hybrid
choice models. Before we turn to that example, we illustrate the joint estimation capabilities
of Apollo by looking at two simpler cases of combining two models, namely the case of joint
estimation on RP and SP data, and the estimation of best-worst data.

One important point should be mentioned already here. The function apollo_combineModels
uses all elements inside the list P. Thus, the user needs to be careful that only components that

86

Chapter 7. Joint estimation of multiple model components 87

should be multiplied together for the overall model are included in P. In general, this will always
be the case. However, a distinction arises in the presence of Latent Class models. As discussed
in Section 6.2, for Latent Class, the user needs to first create the within-class models, before
the weighted average of these is taken by apollo_lc, using the class allocation probabilities as
weights. The within-class probabilities are in the simplest case stored inside P, as in our example
in Section 6.2, and this has benefits in terms of showing the within-class likelihood in the output
and facilitating the calculation of posteriors (cf. Section 9.11.2). However, when a Latent Class
model is one of several components in a model, the use of apollo_combineModels would mean
that the within-class probabilities are treated as a separate model component in creating the
combined likelihood across models. To avoid this, the user can simply use a different list for the
within class probabilities, e.g. P_within_class so that they are not stored in P.

7.1 Joint estimation on RP and SP data

The example Apollo_example_22.r uses the mode choice data we already covered for the earlier
MNL model (cf. Section 4.5.2) but combines the RP and SP data. To allow for scale differences
between the two data sources (Bradley and Daly, 1996; Hensher et al., 1998), we incorporate
separate scale parameters µRP and µSP where the former is kept fixed to 1 for normalisation.

The basic setup is the same as in Section 4.5.2 with the exception that we omit database =
subset(database,database$SP==1) used earlier in Figure 4.3 as we now utilise the entire sample.
The earlier part of the code remains the same as in Figure 4.7 and is largely omitted here for
conciseness of presentation - this includes the definition of mu_RP and mu_SP in apollo_beta, and
the inclusion of mu_RP in apollo_fixed.

The key differences arise in the apollo_probabilities function, where we illustrate this in
Figure 7.1. The definition of the utilities remains the same, with the difference that they are now
calculated for all rows in the data, i.e. for RP rows as well as SP rows. In the example used here,
the service quality attributes are coded as zero for the RP data and thus do not enter into the
utility calculation for these rows.

We first calculate the probabilities for RP choices. The definition of mnl_settings differs from
that in the SP model in Figure 4.7 in that we multiply the utilities by the RP scale parameter, µRP ,
e.g. Vi,n,t,RP = µRPVi,n,t, where we use lapply to cycle over the list of utilities. RP probabilities
should only be calculated for RP rows in the data, and we thus include rows=(RP==1), meaning
that for SP rows in the data, the probability of RP choices is simply fixed to 1 so as not to
contribute to model estimation. We then make the call to apollo_mnl, saving the output not in
P[["model"]] which is reserved for the overall model, but in a subcomponent called P[["RP"]].
For the SP part of the data, we only need to change two components1 in mnl_settings, namely
using lapply(V, "*", mu_SP) instead of lapply(V, "*", mu_RP), and rows = (SP==1) instead
of rows = (RP==1). We then calculate the probabilities for the SP rows in the data. For both
RP and SP, we also use the componentName setting inside mnl_settings - this simply leads to
labelling of model outputs using the names defined by the user for each component.

1As in previous examples, we do not rewrite the entire mnl_settings but just update individual components
inside it.

Chapter 7. Joint estimation of multiple model components 88

The probability for the combined model is obtained by multiplying the RP and SP compon-
ents together in P[["model"]], which is the component used for estimation. Rather than doing
this manually, we use P = apollo_combineModels(P,apollo_inputs,functionality), as this
function also prepares different output depending on the setting of functionality, allowing the
use of joint models also in prediction, for example. The multiplication of probabilities across all
observations for the same respondent happens after combining the two model components, using
apollo_combineModels.
apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io−demographics
asc_bus_value = asc_bus + asc_bus_shift_female ∗ female
asc_air_value = asc_air + asc_air_shi f t_female ∗ female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female ∗ female
b_tt_car_value = b_tt_car + b_tt_shi ft_business ∗ bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business ∗ bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business ∗ bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business ∗ bus ine s s
b_cost_value = (b_cost + b_cost_shi ft_business ∗ bus ine s s) ∗ (income / mean_income) ^

↪→ cost_income_elast

Li s t o f u t i l i t i e s (be f o r e apply ing s c a l e s) : these must use the same names as in mnl_settings ,
↪→ order i s i r r e l e v a n t

V = l i s t ()
V[[' car ']] = asc_car + b_tt_car_value ∗ time_car + b_cost_value ∗

↪→ cost_car
V[[' bus ']] = asc_bus_value + b_tt_bus_value ∗ time_bus + b_access ∗ access_bus + b_cost_value ∗

↪→ cost_bus
V[[' a i r ']] = asc_air_value + b_tt_air_value ∗ time_air + b_access ∗ acce s s_a i r + b_cost_value ∗

↪→ cost_ai r + b_no_fr i l l s ∗ (s e r v i c e_a i r == 1) + b_wifi ∗ (s e r v i c e_a i r == 2) + b_food ∗ (
↪→ s e r v i c e_a i r == 3)

V[[' r a i l ']] = asc_rai l_value + b_tt_rail_value ∗ t ime_ra i l + b_access ∗ a c c e s s_ra i l + b_cost_value ∗
↪→ c o s t_ra i l + b_no_fr i l l s ∗ (s e r v i c e_ r a i l == 1) + b_wifi ∗ (s e r v i c e_ r a i l == 2) + b_food ∗ (
↪→ s e r v i c e_ r a i l == 3)

Compute p r o b a b i l i t i e s f o r the RP part o f the data us ing MNL model
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l) ,
choiceVar = choice ,
V = lapp ly (V, "∗" , mu_RP) ,
rows = (RP==1)

)

P [['RP ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Compute p r o b a b i l i t i e s f o r the SP part o f the data us ing MNL model
mnl_settings$V = lapp ly (V, "∗" , mu_SP)
mnl_sett ings$rows = (SP==1)

P [[' SP ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Combined model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 7.1: Joint RP-SP model on mode choice data
A subset of the model output is shown in Figure 7.2. We see that the model reports the

Chapter 7. Joint estimation of multiple model components 89

joint log-likelihood as well as the subcomponents for the two separate model components, and we
obtain a scale parameter for the SP data (µSP) which is significantly larger than 1. It should be
noted that in models with multiple components, the output in terms of diagnostics (cf. Figure
4.8) can become quite verbose as this information is reported for each model component, and a
user may thus set noDiagnostics to FALSE in apollo_control. The diagnostics are reported in
the order that the model components appear in the overall structure, in this case RP before SP.
This part of the output uses any names defined by the user in mnl_settings$componentName.
The benefit of having defined names here as MNL-RP and MNL-SP is that they are not both shown
as simply coming from MNL components.

7.2 Joint best-worst model

Many stated choice surveys ask respondents for the most and least preferred alternatives, otherwise
known as best-worst or BW (Lancsar et al., 2013). Although there is evidence that the behaviour
in these two stages is not necessarily symmetrical (Giergiczny et al., 2017), such data is commonly
analysed jointly, using in the simplest form a model where the probability for a given person n in
choice task t is given by:

Pn,t =
eVbn,t∑
j=1 e

Vj,n,t
· e−µwVwn,t∑

j 6=bn,t e
−µwVj,n,t

, (7.1)

where bn,t is the most preferred alternative for respondent n in choice situation t while wn,t is the
least preferred option. The above specification assumes that the best option is chosen first, and
the worst is then chosen from the remaining set of alternatives, where the alternative with the
lowest utility has the highest probability of being chosen (given the multiplication of the utilities
by −1). A scale difference between the two stages is allowed for with the estimation of µw.

We illustrate the estimation of best-worst choice models on the drug choice data (cf. Figure
7.3), using the same utility specification as in 5.3.1, but looking at the best and worst choice stages
only, where we allow for a difference in scale between the two stages. This example is available in
Apollo_example_23.r, where we do not repeat the code showing the specification of the utilities,
which is the same as in Figure 5.8. The model component for the first preference (best) is as
in the Exploded Logit model. For the worst stage, we make three changes. We first adapt the
availabilities by making the alternative chosen as the best alternative in the first stage unavailable
in the second stage (assuming sequential choices). We next change the dependent variable to be
worst rather than best, before multiplying the utilities by the negative of µRP , as in Equation
7.1. Of course, the same result could be achieved by making use of the apollo_el function with
two stages, using the best and worst outcomes and a negative scale multiplier for the second stage.
We show the use of two separate components here as this would also allow a user to change the
actual utility function between the best and worst stage by for example allowing for differences
in individual β terms going beyond just a generic scale difference (by redefining the utilities for
the worst stage). This is not possible with apollo_el which allows for scale differences only. We
again define names for the individual components using mnl_settings$componentName.

Chapter 7. Joint estimation of multiple model components 90

Model name : Apollo_example_22
Model d e s c r i p t i o n : RP−SP model on mode cho i c e data
Model run at : 2021−02−04 19 : 03 : 44
Estimation method : b fgs
Model d i a gno s i s : s u c c e s s f u l convergence
Number o f i n d i v i du a l s : 500
Number o f rows in database : 8000
Number o f modelled outcomes : 8000

RP: 1000
SP : 7000

Number o f co r e s used : 1
Model without mixing

LL(s t a r t) : −9366.881
LL(0 , whole model) : −9366.881
LL(f i n a l , whole model) : −5802.644
Rho−square (0) : 0 .3805
Adj .Rho−square (0) : 0 .3786
AIC : 11641.29
BIC : 11767.06

LL(0 ,RP) : −1170.86
LL(f i n a l ,RP) : −971.2441
LL(0 ,SP) : −8196.021
LL(f i n a l , SP) : −4831.4

Est imates :
Estimate s . e . t . ra t . (0) Rob . s . e . Rob . t . ra t . (0)

asc_car 0.000000 NA NA NA NA
asc_bus 0.124860 0.281042 0.4443 0.262032 0.4765
asc_air −0.396083 0.183661 −2.1566 0.177781 −2.2279
a s c_ra i l −0.978683 0.180545 −5.4207 0.177525 −5.5129
asc_bus_shift_female 0.181337 0.064657 2.8046 0.071407 2.5395
asc_air_shi f t_female 0.134505 0.045471 2.9580 0.047351 2.8406
asc_ra i l_sh i f t_female 0.098187 0.036644 2.6795 0.038414 2.5561
b_tt_car −0.006424 5.0942 e−04 −12.6114 4.9442 e−04 −12.9939
b_tt_bus −0.010507 9.6111 e−04 −10.9321 8.7337 e−04 −12.0304
b_tt_air −0.008668 0.001466 −5.9139 0.001432 −6.0517
b_tt_rai l −0.003838 9.2074 e−04 −4.1682 8.9506 e−04 −4.2878
b_tt_shi ft_business −0.003203 3.4648 e−04 −9.2440 3.4887 e−04 −9.1806
b_access −0.010545 0.001531 −6.8857 0.001462 −7.2143
b_cost −0.038234 0.002461 −15.5356 0.002429 −15.7376
b_cost_shi ft_business 0 .016656 0.001634 10.1910 0.001551 10.7398
cost_income_elast −0.613155 0.029204 −20.9954 0.029760 −20.6033
b_no_fr i l l s 0 .000000 NA NA NA NA
b_wifi 0 .523122 0.043045 12.1530 0.043595 11.9995
b_food 0.220074 0.030836 7.1369 0.031546 6.9764
mu_RP 1.000000 NA NA NA NA
mu_SP 1.994746 0.126412 15.7798 0.122886 16.2325

Overview o f cho i c e s f o r MNL model component RP:
car bus a i r r a i l

Times a va i l a b l e 778.00 902.00 752.00 874.00
Times chosen 332.00 126.00 215.00 327.00
Percentage chosen o v e r a l l 33 .20 12 .60 21 .50 32 .70
Percentage chosen when ava i l a b l e 42 .67 13 .97 28 .59 37 .41

Overview o f cho i c e s f o r MNL model component SP :
car bus a i r r a i l

Times a va i l a b l e 5446.00 6314.00 5264.00 6118.00
Times chosen 1946.00 358.00 1522.00 3174.00
Percentage chosen o v e r a l l 27 .80 5 .11 21 .74 45 .34
Percentage chosen when ava i l a b l e 35 .73 5 .67 28 .91 51 .88

Figure 7.2: On screen output for RP-SP model

7.3 Hybrid choice model

We next turn to the use of Apollo for hybrid choice models (see Abou-Zeid and Ben-Akiva, 2014,
for a recent overview), where we look at a simple implementation of a model with a single latent

Chapter 7. Joint estimation of multiple model components 91

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .

Compute p r o b a b i l i t i e s f o r ' best ' cho i c e us ing MNL model
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t (a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
choiceVar = best ,
V = V,
componentName = " best "

)
P [[' choice_best ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Compute p r o b a b i l i t i e s f o r 'worst ' cho i c e us ing MNL model
mnl_set t ings$ava i l = l i s t (a l t 1=(best !=1) , a l t 2=(best !=2) , a l t 3=(best !=3) , a l t 4=(best !=4))
mnl_sett ings$choiceVar = worst
mnl_settings$V = lapp ly (V,"∗" ,−mu_worst)
mnl_settings$componentName = "worst "

P [[' choice_worst ']] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Combined model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 7.3: Best-Worst model on drug choice data

variable on the drug choice data described in Section 3.3. We use a dummy coded specification for
the three categorical variables, along with a continuous specification for risk and cost. We specify
a structural model for the latent variable that uses the three socio-demographic characteristics
included in the data, and then use this latent variable in the utilities for the two branded altern-
atives as well as in the measurement models for the four attitudinal indicators. In our example,
we do not incorporate additional random heterogeneity not linked to the latent variable, but this
is entirely straightforward to do by including additional terms in apollo_randCoeff. Similarly,
it is possible to combine latent variables with Latent Class structures. Indeed, latent variables
are simply additional random components in a model.

Two different versions of the model are provided. The first of these, Apollo_example_24.r
uses an Ordered Logit model for the indicators, as discussed by Daly et al. (2012b). The second
example, Apollo_example_25.r uses the common simplification of treating the indicators as being
normally distributed. We will now look at these two models in turn.

Specifically, we have that the latent variable for individual n is given by:

αn = γ′zn + ηn, (7.2)

where zn is a vector combining the three socio-demographic variables for individual n, γ is a
vector of estimated parameters capturing the impact of these variables on αn and ηn is a random
disturbance which follows a standard Normal distribution across individuals, i.e. ηn ∼ N (0, 1).

Chapter 7. Joint estimation of multiple model components 92

The utility for alternative j in choice situation t for individual n is given by:

Vj,n,t =
5∑
s=1

βbrands ·
(
xbrandj,n,t == s

)
+

6∑
s=1

βcountrys ·
(
xcountryj,n,t == s

)
+

3∑
s=1

βcharacteristics ·
(
xcharacteristicj,n,t == s

)
+ βside_effects · xside_effectsj,n,t
+ βprice · xpricej,n,t
+ λ · αn · (j ≤ 2) . (7.3)

For the first five rows, the same specification as in Section 5.3.1 and Section 7.2 is used, with
dummy coding for the categorical variables and a continuous treatment of risk and price. Finally,
the inclusion of the latent variable, i.e. λ · αn only applies to the first two alternatives, i.e. the
branded products. We thus get that the likelihood of the observed sequence of Tn choices for
person n, conditional on β and αn, is given by:

LCn (β, αn) =

Tn∏
t=1

e
Vj∗n,t∑4

j=1 e
Vj,n,t

, (7.4)

where j∗n,t is the alternative chosen by respondent n in task t.
The latent variable is also used to explain the value of the four attitudinal questions, where

two different specifications are used in our example.
With the Ordered Logit model, we have that:

LIn,ordered (τ, ζ, αn) =
4∏
i=1

(
S∑
s=1

δ(In,i=s)

[
eτi,s−ζiαn

1 + eτi,s−ζiαn
− eτi,s−1−ζiαn

1 + eτi,s−1−ζiαn

])
, (7.5)

where ζi is an estimated parameter that measures the impact of αn on the attitudinal indicator
Ii, and τi,· is a vector of threshold parameters for this indicator.

With the continuous measurement model, we instead have that:

LIn,normal (σ, ζ, αn) =
4∏
i=1

1√
2πσ2i

e
−(In,i−Īi−ζiαn)

2

2σ2
i (7.6)

where ζi is an estimated parameter that measures the impact of αn on the attitudinal indicator
Ii, and σi is an estimated standard deviation. By subtracting the mean of the indicator across

Chapter 7. Joint estimation of multiple model components 93

the sample, i.e. using In,i − Īi, we avoid the need to estimate the mean of the normal density.
This is most easily done as a data transformation straight after loading the data, as shown in
Apollo_example_25.r .

The combined log-likelihood for the model is then given by:

LL (γ, ζ, τ, β) =
N∑
n=1

log

∫
ηn

LCn (β, αn)LIn,ordered (τ, ζ, α)φ (ηn) dηn, (7.7)

with the ordered model, where we would replace LIn,ordered (τ, ζ, α) by LIn,normal (σ, ζ, α) for
the continuous measurement model (Equation 7.6 instead of Equation 7.5). This log-likelihood
function requires integration over the random component in the latent variable, where this integral
is then approximated using numerical simulation.

For conciseness, we do not here reproduce the obvious parts of the code relating to the defin-
ition of parameters or basic settings. In Figure 7.4, we start by creating 100 inter-individual
standard Normal draws for η based on Halton draws. We then define a single random component
inside apollo_randCoeff, where this is for the latent attitude αn, in line with Equation 7.2,
which includes deterministic heterogeneity through the inclusion of socio-demographic effects.
Set parameters f o r genera t ing draws
apollo_draws = l i s t (

interDrawsType="halton " ,
interNDraws=100 ,
interUni fDraws=c () ,
interNormDraws=c (" eta ")

)

Create random parameters
apol lo_randCoef f=func t i on (apollo_beta , apo l lo_inputs) {

randcoe f f = l i s t ()

r andcoe f f [["LV"]] = gamma_reg_user∗ regu lar_user + gamma_university∗ univers i ty_educated + gamma_age_50∗
↪→ over_50 + eta

return (randcoe f f)
}

Figure 7.4: Hybrid choice model: draws and latent variable

Figure 7.5 shows the implementation of the hybrid model in the apollo_probabilities func-
tion for the example with an ordered measurement model, i.e. Apollo_example_24.r. We create
a list P which will in the end have five components, namely the probabilities of the four meas-
urement models and the probabilities from the choice model. We first compute the probabilities
for the four Ordered Logit measurement models, one for each attitudinal statement, where these
explain the values for the attitudinal indicators as a function of the latent variable, as detailed in
Equation 7.5. For details on the syntax of, refer to 5.3.2. One point to note here is the inclusion
of rows=(task==1) which ensures that the measurement model is only used once for each attitu-
dinal statement and for each individual, rather than contributing to the overall model likelihood
in each row for that person. This is in line with the rows in the data being for choice tasks, and
the answers to attitudinal questions being repeated in the data in each row.

We next turn to the calculation of the probabilities for the choice model component of the
hybrid model. The definition of alternatives, avail and choiceVar is as before. The core

Chapter 7. Joint estimation of multiple model components 94

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

Attach inputs and detach a f t e r func t i on ex i t
apol lo_attach (apollo_beta , apo l lo_inputs)
on . e x i t (apol lo_detach (apollo_beta , apo l lo_inputs))

Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ()

Like l ihood o f i n d i c a t o r s
o l_se t t i ng s1 = l i s t (outcomeOrdered = att i tude_qua l i ty ,

V = zeta_qual i ty ∗LV,
tau = l i s t (tau_quality_1 , tau_quality_2 , tau_quality_3 , tau_quality_4) ,
rows = (task==1) ,
componentName = " ind i c_qua l i ty ")

. . .
o l_se t t i ng s4 = l i s t (outcomeOrdered = attitude_dominance ,

V = zeta_dominance∗LV,
tau = l i s t (tau_dominance_1 , tau_dominance_2 , tau_dominance_3 ,

↪→ tau_dominance_4) ,
rows = (task==1) ,
componentName = " indic_dominance ")

P [[" ind i c_qua l i ty "]] = apo l lo_ol (o l_set t ings1 , f u n c t i o n a l i t y)
P [[" i nd i c_ ing r ed i en t s "]] = apo l lo_ol (o l_set t ings2 , f u n c t i o n a l i t y)
P [[" indic_patent "]] = apo l lo_ol (o l_set t ings3 , f u n c t i o n a l i t y)
P [[" indic_dominance "]] = apo l lo_ol (o l_set t ings4 , f u n c t i o n a l i t y)

Like l ihood o f cho i c e s
Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ()
V[[' a l t1 ']] = (b_brand_Artemis ∗(brand_1=="Artemis ") + b_brand_Novum∗(brand_1=="Novum")

+ b_country_CH∗(country_1=="Switzer land ") + b_country_DK∗(country_1=="Denmark") +
↪→ b_country_USA∗(country_1=="USA")

+ b_char_standard ∗(char_1=="standard ") + b_char_fast ∗(char_1=="f a s t ac t ing ") +
↪→ b_char_double ∗(char_1=="double s t r ength ")

+ b_risk∗ s ide_e f f ec t s_1
+ b_price∗price_1
+ lambda∗LV)

V[[' a l t2 ']] = (b_brand_Artemis ∗(brand_2=="Artemis ") + b_brand_Novum∗(brand_2=="Novum")
+ b_country_CH∗(country_2=="Switzer land ") + b_country_DK∗(country_2=="Denmark") +

↪→ b_country_USA∗(country_2=="USA")
+ b_char_standard ∗(char_2=="standard ") + b_char_fast ∗(char_2=="f a s t ac t ing ") +

↪→ b_char_double ∗(char_2=="double s t r ength ")
+ b_risk∗ s ide_e f f ec t s_2
+ b_price∗price_2
+ lambda∗LV)

V[[' a l t3 ']] = (b_brand_BestValue ∗(brand_3=="BestValue ") + b_brand_Supermarket ∗(brand_3=="Supermarket
↪→ ") + b_brand_PainAway∗(brand_3=="PainAway")

+ b_country_USA∗(country_3=="USA") + b_country_IND∗(country_3=="India ") + b_country_RUS
↪→ ∗(country_3=="Russia ") + b_country_BRA∗(country_3=="Braz i l ")

+ b_char_standard ∗(char_3=="standard ") + b_char_fast ∗(char_3=="f a s t ac t ing ")
+ b_risk∗ s ide_e f f ec t s_3
+ b_price∗price_3)

V[[' a l t4 ']] = (b_brand_BestValue ∗(brand_4=="BestValue ") + b_brand_Supermarket ∗(brand_4=="Supermarket
↪→ ") + b_brand_PainAway∗(brand_4=="PainAway")

+ b_country_USA∗(country_4=="USA") + b_country_IND∗(country_4=="India ") + b_country_RUS
↪→ ∗(country_4=="Russia ") + b_country_BRA∗(country_4=="Braz i l ")

+ b_char_standard ∗(char_4=="standard ") + b_char_fast ∗(char_4=="f a s t ac t ing ")
+ b_risk∗ s ide_e f f ec t s_4
+ b_price∗price_4)

Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c (a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t (a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
choiceVar = best ,
V = V,
componentName= " cho i c e "

)

Compute p r o b a b i l i t i e s f o r MNL model component
P [[" cho i c e "]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Like l ihood o f the whole model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y)

Average ac ro s s in t e r−i n d i v i dua l draws
P = apollo_avgInterDraws (P, apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 7.5: Hybrid choice model with ordered measurement model: defining probabilities

Chapter 7. Joint estimation of multiple model components 95

Load data
database <− read . csv (" apollo_drugChoiceData . csv ")

database$at t i tude_qua l i ty=database$att i tude_qual i ty−mean(database$at t i tude_qua l i ty)
database$at t i tude_ingred i ent s=database$at t i tude_ingred i ent s−mean(database$at t i tude_ingred i ent s)
database$att i tude_patent=database$att i tude_patent−mean(database$att i tude_patent)
database$attitude_dominance=database$attitude_dominance−mean(database$attitude_dominance)

. . .

a p o l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .
Like l ihood o f i n d i c a t o r s
normalDens ity_sett ings1 = l i s t (outcomeNormal = att i tude_qua l i ty ,

xNormal = zeta_qual i ty ∗LV,
mu = 0 ,
sigma = sigma_qual ,
rows = (task==1) ,
componentName = " ind i c_qua l i ty ")

. . .
normalDens ity_sett ings4 = l i s t (outcomeNormal = attitude_dominance ,

xNormal = zeta_dominance∗LV,
mu = 0 ,
sigma = sigma_domi ,
rows = (task==1) ,
componentName = " indic_dominance ")

P [[" ind i c_qua l i ty "]] = apol lo_normalDensity (normalDensity_sett ings1 , f u n c t i o n a l i t y)
P [[" i nd i c_ ing r ed i en t s "]] = apol lo_normalDensity (normalDensity_sett ings2 , f u n c t i o n a l i t y)
P [[" indic_patent "]] = apol lo_normalDensity (normalDensity_sett ings3 , f u n c t i o n a l i t y)
P [[" indic_dominance "]] = apol lo_normalDensity (normalDensity_sett ings4 , f u n c t i o n a l i t y)

. . .
}

Figure 7.6: Hybrid choice model with continuous measurement model: zero-centering indicators
and defining probabilities

part of the utility functions is as in Figure 5.8, with the addition that the latent variable αn is
introduced into the utilities for the first two alternatives only, multiplied by a common parameter
(λ), as shown in Equation 7.3.

The list P now contains five individual components, and the call to apollo_combineModels
combines these into a joint model, prior to multiplying across choices for the same individual and
averaging across draws, using the by now well known functions.

In Apollo_example_25.r, we use a continuous measurement model for the indicators. In line
with Equation 7.6, we wish to avoid the estimation of the means for the latent variable. This is
achieved by zero-centering the indicators, a process that needs to take place at the database level,
prior to the call to apollo_validateInputs to ensure that these new variables are identical across
cores in a multi-core setting. We show this part of the code in Figure 7.6, along with the part of
apollo_probabilities which changes, which is only the treatment of the indicators, where we
now use the function apollo_normalDensity, with details available in Section 5.3.3.

Chapter 8

Bayesian estimation

Apollo allows the user to replace classical estimation by Bayesian estimation, for all models. We
do not provide details here on Bayesian theory but instead refer the reader to Lenk (2014) and
the references therein. Bayesian estimation in Apollo makes use of the RSGHB package, and the
user is referred to the documentation in Dumont and Keller (2019) for RSGHB-specific settings.
The key advantage for the user is that Apollo provides a wrapper around RSGHB so that the
syntax in apollo_probabilities does not change when a user moves from classical to Bayesian
estimation. In addition, Apollo implements a large number of checks, most notably ensuring that
all parameters defined by the user actually impact on the likelihood of the model. It also reports
whether RSGHB applied any censoring to the probabilities.

To explain the process, we now look at the estimation of a Mixed Logit version of the mode
choice model from Section 4.5.2, which is included in Apollo_example_26.r. We use Normal
distributions for the three ASCs, negative Lognormal distributions for the time and cost coeffi-
cients, censored Normal distributions (with negative values fixed to zero) for the wifi and food
parameters, and non-random parameters for all other terms.

The first steps in the model definition are shown in Figure 8.1, where we define the individual
coefficients and their starting values in apollo_beta. In Bayesian estimation, the values given
here are the means of the underlying Normal distributions. As a result, we use starting values of -3
for the underlying mean of the Lognormally distributed coefficients, i.e. the mean of the logarithm
of the coefficients. The definition of apollo_fixed is also as in the MNL model. However, only
parameters that are non-random across individuals can be kept fixed via apollo_fixed. RSGHB
also allows users to have random parameters where the mean and/or standard deviation are fixed
(cf. Dumont and Keller, 2019).

We next create a list called apollo_HB, containing settings for the Bayesian estimation of
the model. The only requirement when using Bayesian estimation in Apollo is that this list
must contain an element called hbDist. It can also include any other setting as described in the
documentation of the RSGHB package (for more info, type ?RSGHB::doHB in the R console). The
following is a non-exhaustive list of the most relevant setting to be included in apollo_HB:

hbDist: This is the only mandatory setting to be included in apollo_HB. It is a vector giving
the name of each model parameter and indicating the distribution to be used. This replaces

96

Chapter 8. Bayesian estimation 97

apol lo_beta=c (asc_car = 0 ,
asc_bus = 0 ,
asc_air = 0 ,
a s c_ra i l = 0 ,
asc_bus_shift_female = 0 ,
asc_air_shi f t_female = 0 ,
asc_ra i l_sh i f t_female = 0 ,
b_tt_car =−3,
b_tt_bus =−3,
b_tt_air =−3,
b_tt_rai l =−3,
b_tt_shi ft_business = 0 ,
b_access =−3,
b_cost =−3,
b_cost_shi ft_business = 0 ,
cost_income_elast = 0 ,
b_no_fr i l l s = 0 ,
b_wifi = 0 ,
b_food = 0)

apo l l o_f ixed = c (" asc_car " ," b_no_fr i l l s ")

apollo_HB = l i s t (
hbDist = c (asc_car = "F" ,

asc_bus = "N" ,
asc_air = "N" ,
a s c_ra i l = "N" ,
asc_bus_shift_female = "F" ,
asc_air_shi f t_female = "F" ,
asc_ra i l_sh i f t_female = "F" ,
b_tt_car = "LN−",
b_tt_bus = "LN−",
b_tt_air = "LN−",
b_tt_rai l = "LN−",
b_tt_shi ft_business = "F" ,
b_access = "LN−",
b_cost = "LN−",
b_cost_shi ft_business = "F" ,
cost_income_elast = "F" ,
b_no_fr i l l s = "F" ,
b_wifi = "CN+",
b_food = "CN+") ,

gNCREP = 50000 , # burn−in i t e r a t i o n s
gNEREP = 20000 , # post burn−in i t e r a t i o n s
gINFOSKIP = 500)

Figure 8.1: Bayesian estimation in Apollo: model settings

the vector gdist in RSGHB, which requires the user to use numeric coding for distributions. All
parameters in apollo_beta should be included in the hbDist vector. There are seven possible
distributions, as follows.

"NR": non-random (fixed) parameters. This setting should also be used for parameters that
are included in apollo_fixed.

"N": normally distributed random parameters.
"LN+": positive lognormally distributed random parameters.
"LN-": negative lognormally distributed random parameters;.
"CN+": normally distributed random parameters, bounded below at 0.
"CN-": normally distributed random parameters, bounded above at 0.
"JSB": Johnson SB distributed random parameters.

gNCREP: number of burn-in iterations to use prior to convergence (default=105).
gNEREP: number of iterations to keep for averaging after convergence has been reached
(default=105).

Chapter 8. Bayesian estimation 98

gINFOSKIP: number of iterations between printing/plotting information about the iteration
process (default=250).

constraintNorm: a character vector with constraints on random coefficients. For example,
c("b1>b2", "b1<0") indicates that all draws of parameter b1 must be bigger than the cor-
responding draw of b2, and that all draws from b1 should be smaller than zero. Supported
constraints are of the form "b1>b2", "b1<b2", "b1>0", and "b1<0", where b1 and b2 are
the names of parameters. Constraints can also be expressed using numerical coding of the
parameters as described in the documentation of the RSGHB package.

fixedA: Named numeric vector. Contains the names and fixed mean values of random para-
meters. For example, c(b1=0) fixes the mean of parameter b1 to zero.

fixedD: Named numeric vector. Contains the names and fixed variance of random parameters.
For example, c(b1=1) fixes the variance of b1 to zero.

Additional settings can be included in apollo_HB as described in the documentation of the
RSGHB package. For more information type ?RSGHB::doHB in the R console. Settings modelname,
gVarNamesFixed, gVarNamesNormal, gDIST, svN and FC should not be included in apollo_HB, as
these are automatically set by Apollo.

The apollo_probabilities function is exactly the same as for the MNL model shown
in Figure 4.7 and is thus not reproduced here. When using Bayesian estimation, the use of
apollo_avgInterDraws and apollo_avgIntraDraws does not apply even in the presence of ran-
dom coefficients and these functions should not be used. In addition, the call to apollo_panelProd
should not be made as RSGHB automatically groups together observations for the same individual.

The call to apollo_estimate is made in exactly the same way as with classical estimation.
The estimation process is illustrated in Figure 8.2 for the text output and Figure 8.3 for a graphical
output of the chains. In the text output, we show the first and final iteration, where this also
highlights the way in which RSGHB confirms the distributions used at the outset. Note that RSGHB
refers to non-random parameters as fixed, even if their values are estimated - the terminology
refers to them being fixed across individuals.

The post-estimation output from a model using Bayesian estimation is substantially different
from that with classical estimation, and is summarised in Figure 8.4. The early information on
model name etc is the same as with classical estimation. This is followed by average model fit
statistics across the post burn-in iterations. Next, we have convergence reports for the parameter
chains, where these use the Geweke test (Geweke, 1992). The next four parts of the output look at
summaries of the parameter chains, each time giving the mean and standard deviation across the
post burn-in iterations for each parameter, where these results are divided into the non-random
coefficients, the means for the underlying Normals, and the covariance matrix (split across two
tables, with the mean and standard deviations of each entry in the covariance matrix). Finally,
the output reports the means and standard deviations for the posteriors, where these are for the
actual coefficients, i.e. taking into account the distributions used, rather than looking at the
underlying Normals. All the values used for these components are also available in the model
object after estimation and can be used for plotting. The use of apollo_saveOutput operates
as before, but if saveEst==TRUE, the code additionally saves the output files produced by RSGHB,
which can be very large in size (cf. Dumont and Keller, 2019).

Chapter 8. Bayesian estimation 99

> model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Diagnost i c checks passed . Please review be fo r e proceed ing
−−−

Number o f I nd i v i dua l s : 500
Number o f Observat ions : 7000

Pr io r var iance : 2
Target Acceptance (Fixed) : 0 .3

Target Acceptance (Normal) : 0 .3
Degrees o f Freedom : 5

Avg . Number o f Observat ions per Ind iv idua l : 14
I n i t i a l Log−Like l ihood : −19242.47502

−−−

Fixed Parameters Star t
asc_bus_shift_female 0
asc_air_shi f t_female 0

asc_ra i l_sh i f t_female 0
b_tt_shi ft_business 0

b_cost_shi ft_business 0
cost_income_elast 0

−−−

Random Parameters Star t Dist .
asc_bus 0 N
asc_air 0 N

asc_ra i l 0 N
b_tt_car −3 LN−
b_tt_bus −3 LN−
b_tt_air −3 LN−

b_tt_rai l −3 LN−
b_access −3 LN−

b_cost −3 LN−
b_wifi 0 CN+
b_food 0 CN+

−−−

. . .

−−−
I t e r a t i o n : 70000
−−−

RHO (Fixed) : 2 .552501553 e−06
Acceptance Rate (Fixed) : 0 .27

RHO (Normal) : 0 .3597337714
Acceptance Rate (Normal) : 0 .274

Parameter RMS: 0.8041928485
Avg . Variance : 0.6332235963

Log−Like l ihood : −4679.250243
RLH: 0.5321134338

−−−

Fixed Parameters Estimate
asc_bus_shift_female : 0 .155267594
asc_air_shi f t_female : 0 .179787768

asc_ra i l_sh i f t_female : 0 .049740490
b_tt_shi ft_business : −0.007606631

b_cost_shi ft_business : 0 .025081677
cost_income_elast : −0.657755249

−−−

Random Parameters Estimate
asc_bus : −1.26844325
asc_air : −0.88899095

a s c_ra i l : −1.68400949
b_tt_car : −4.60350381
b_tt_bus : −4.17958902
b_tt_air : −4.79469223

b_tt_rai l : −5.54448074
b_access : −4.15475692

b_cost : −2.69130377
b_wifi : 0 .86761015
b_food : 0.04980724

−−−
Time per i t e r a t i o n : 0 .0497 s e c s
Time to complet ion : 0 mins
−−−
Estimation complete .
WARNING: RSGHB has censored the p r o b a b i l i t i e s . P lease note that in

at l e a s t some i t e r a t i o n s RSGHB has avoided numerical i s s u e s by
l e f t c enso r ing the p r o b a b i l i t i e s . This has the s i d e e f f e c t o f
zero or negat ive p r o b a b i l i t i e s not l ead ing to f a i l u r e s

Figure 8.2: Bayesian estimation in Apollo: estimation process

Chapter 8. Bayesian estimation 100

Figure 8.3: Bayesian estimation in Apollo: estimation process (parameter chains)

In classical estimation, Apollo creates an object estimates in the model list created
after estimation, containing the final parameter values. When using Bayesian estimation,
model$estimates is also produced, combining non-random parameters with individual spe-
cific posteriors for random parameters. This allows the user to use apollo_prediction and
apollo_llCalc on such outputs, where care is of course required in interpretation of outputs
based on posterior means.

Chapter 8. Bayesian estimation 101

> apollo_modelOutput(model)

Model run us ing Apol lo f o r R, ve r s i on 0 . 2 . 4 on Darwin by stephane . hess
www. Apol loChoiceModel l ing . com

Model name : Apollo_example_26
Model d e s c r i p t i o n : HB model on mode cho i c e SP data
Estimation method : H i e r a r ch i c a l Bayes

Average post . LL post burn−in : −4629.457
Average post . RLH post burn−in : 0 .5362

Chain convergence repor t (Geweke t e s t)

Fixed (non random) parameters (t−t e s t value f o r Geweke t e s t)
asc_bus_shift_female asc_air_shi f t_female asc_ra i l_sh i f t_female b_tt_shi ft_business

−4.9291 −5.7769 7.5432 −0.1500
. . .

Random parameters (t−t e s t value f o r Geweke t e s t)
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l b_access b_cost b_wifi
0 .2384 0.0696 −3.2800 0.0959 0.0235 2.4283 −1.2188 −3.8897 0.5057 −0.3900

. . .

Covar iances o f random parameters (t−t e s t value f o r Geweke t e s t)
asc_bus_asc_bus asc_air_asc_bus asc_air_asc_air asc_rail_asc_bus asc_rai l_asc_air

0 .4194 1.2288 0.8878 2.0205 −0.9210
. . .

Summary o f parameter cha ins

Non−random c o e f f i c i e n t s
Mean SD

asc_car 0 .0000 NA
asc_bus_shift_female 0 .0834 0.0307
. . .

Upper l e v e l model r e s u l t s f o r mean parameters f o r under ly ing Normals
Mean SD

asc_bus −0.5754 0.3610
asc_air −0.7175 0.2733
. . .

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (means ac ro s s i t e r a t i o n s)
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l b_access b_cost b_wifi b_food

asc_bus 0.2204 −0.0177 −0.0058 0.0017 0.0310 −0.0131 −0.0138 −0.0033 −0.0010 −0.0136 0.0149
asc_air −0.0177 0.1471 0.0442 −0.0125 −0.0072 0.0166 −0.0172 0.0212 0.0089 −0.0059 −0.0135
. . .

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (SD ac ro s s i t e r a t i o n s)
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l b_access b_cost b_wifi b_food

asc_bus 0.0787 0.0515 0.0491 0.0202 0.0207 0.0485 0.0432 0.0611 0.0158 0.0577 0.0577
asc_air 0 .0515 0.0440 0.0339 0.0149 0.0176 0.0420 0.0474 0.0456 0.0141 0.0440 0.0435
. . .

Summary o f d i s t r i b u t i o n s o f random c o e f f i e n t s (a f t e r d i s t r i b u t i o n a l t rans forms)
Mean SD

asc_bus −0.5767 0.4664
asc_air −0.7213 0.3814
. . .

Covariance matrix o f random c o e f f i e n t s (a f t e r d i s t r i b u t i o n a l t rans forms)
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l b_access b_cost b_wifi b_food

asc_bus 0.2175 −0.0165 −0.0037 0e+00 −5e−04 1e−04 0 0e+00 1e−04 −0.0114 0.0131
asc_air −0.0165 0.1455 0.0431 1e−04 1e−04 −2e−04 0 −4e−04 −6e−04 −0.0066 −0.0087
. . .

Co r r e l a t i on matrix o f random c o e f f i e n t s (a f t e r d i s t r i b u t i o n a l t rans forms)
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l b_access b_cost b_wifi b_food

asc_bus 1.0000 −0.0929 −0.0212 −0.0186 −0.2784 0.0670 0.0651 0.0093 0.0147 −0.0587 0.0765
asc_air −0.0929 1.0000 0.3010 0.1369 0.0760 −0.1130 0.0965 −0.1184 −0.1026 −0.0418 −0.0619
. . .

Resu l t s f o r p o s t e r i o r means f o r random c o e f f i c i e n t s
Mean SD

asc_bus −0.5754 0.0356
asc_air −0.7173 0.0485
. . .

Figure 8.4: Bayesian estimation in Apollo: output (extracts)

Chapter 9

Pre and post-estimation capabilities

A large number of additional functions are provided in Apollo to allow the user to analyse the
results after estimation. The outputs from these functions are not saved in the model output
files, and it is then helpful for a user to dump the additional output to a text file, for example
using sink(paste(model$apollo_control$modelName,"_additional_output.txt",sep=""),
split=TRUE) which produces a new text file using the name of the current model. Outputs
in the console are then also written into this text file, and writing to file can be stopped via
if(sink.number()>0) sink(). We will now look at these various functions in turn.

9.1 Pre-estimation analysis of choices

With labelled choice data (or even unlabelled data where there may be strong left-right effects), it
can be useful to analyse the choices before model estimation to determine whether the character-
istics of individuals choosing specific alternatives differ across alternatives. This is made possible
by the function called apollo_choiceAnalysis, which is called as follows:

apollo_choiceAnalysis(choiceAnalysis_settings,
apollo_control,
database)

where choiceAnalysis_settings has the following contents:

alternatives: A named vector containing the names of the alternatives, as in e.g. an MNL
model.

avail: A list containing one element with availabilities per alternative, as in e.g. an MNL
model, but where reference to database needs to be made given that we are operating outside
apollo_probabilities (cf. Figure 9.1).

choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation.

102

Chapter 9. Pre and post-estimation capabilities 103

explanators: A dataframe containing a set of variables, one per column and one entry per
choice observation, that are to be used to analyse the choices. This could include explan-
tory variables describing the alternatives but is most useful for characteristics of the decision
makers. In order to be able to define this object outside apollo_probabilities, reference to
the database again needs to be made(cf. Figure 9.1).

rows: This is an optional argument which is missing by default. It allows the user to specify a
vector called rows of the same length as the number of rows in the data. This vector needs
to use logical statements to identify which rows in the data are to be used for the analysis of
choices.

cho i c eAna ly s i s_se t t i ng s <− l i s t (
a l t e r n a t i v e s = c (car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t (car=database$av_car , bus=database$av_bus , a i r=database$av_air , r a i l=

↪→ database$av_rai l) ,
choiceVar = database$choice ,
exp lanator s = database [, c (" female " ," bus ine s s " ," income ")] ,
rows = database$income >30000

)

apo l l o_cho i ceAna lys i s (cho i c eAna ly s i s_se t t ing s , apo l lo_contro l , database)

Figure 9.1: Running apollo_choiceAnalysis (syntax and excerpt of output)

The function produces a csv file with one row per alternative, and three columns per variable
included in explanators. In a given row, i.e. for a given alternative, these three columns contain
the mean value for the given explanatory variable for those choices where the alternative is chosen,
the mean value where it is not chosen (but available), and the test statistic for the two-sample t-
test comparing the means in these two groups (where the null hypothesis states that the difference
between the means is equal to 0, and the alternative hypothesis says that it is different from zero.).
These value are also returned silently by the function, so they can be stored in a variable, by using
e.g. output=apollo_choiceAnalysis(choiceAnalysis_settings,apollo_control,database).
An example application of this function is included in the MNL model estimated on the RP mode
choice data (Apollo_example_1.r), where we show the results for the first explanator only.

9.2 Reading in a previously saved model object

As mentioned in Section 4.7, the call to apollo_saveOutput (with default settings) saves the
model object in a .rds file. It is then possible to read this in as a model object using the function

Chapter 9. Pre and post-estimation capabilities 104

apollo_loadModel which is called as:

oldModel = apollo_loadModel(modelName)

where modelName needs to be replaced by the name (as a string, i.e. with quotation marks) of
previously run model (for which the output was saved in the current directory). The output
from this function is a model object, which in this case is saved into oldModel. The benefit
of this function is that it is then easy for a user to return to a previously estimated model,
and compute additional output with the estimates from that model and having access to the
full covariance matrix without needing to reestimate the model. An example is included in
apollo_example_16.r.

9.3 Calculating model fit for given parameter values

Especially with complex models, it can be useful for testing purposes to calculate the log-likelihood
of the model (and subcomponents) for given parameter values, before or after estimation. This is
made possible by the function apollo_llCalc, which is called as follows:

apollo_llCalc(apollo_beta,
apollo_probabilities,
apollo_inputs)

where we illustrate this in Figure 9.2 for the case of the hybrid choice model
(Apollo_example_24.r) from Section 7.3. It should be noted that when calling this function, the
format of apollo_beta needs to be compatible with what is used inside apollo_probabilities.
All parameters used inside the model need to be included, with either one value per parameter
(classical estimation) or one value per parameter and per observation (Bayesian estimation).
> apollo_llCalc(apollo_beta, apollo_probabilities, apollo_inputs)
Updating inputs . . . Done .
Ca l cu la t ing LL o f each model component . . . Done .
$model
[1] −19734.47

$ ind i c_qua l i ty
[1] −1505.83

$ ind i c_ ing r ed i en t s
[1] −1531.451

$indic_patent
[1] −1543.356

$indic_dominance
[1] −1465.061

$cho i ce
[1] −13314.75

Figure 9.2: Running apollo_llCalc
Note that apollo_llCalc use the copy of the database stored within apollo_inputs, and

not the version of database that may be stored in the user environment (i.e. the Global Environ-
ment). If the user wishes to calculate the log-likelihood for a modified database (for example, to

Chapter 9. Pre and post-estimation capabilities 105

study how the log-likelihood changes in a new scenario) we recommend doing it in three stages.
First, modify database in whatever way is needed. Then update apollo_inputs by running
apollo_inputs = apollo_validateInputs(), and finally calling apollo_llCalc.

9.4 Likelihood ratio tests against other models

A core step in many model fitting exercises is the comparison of models of different levels of
complexity. When comparing two models where one model is a more general version of a base
model, i.e. the base model is nested within the general model, a likelihood-ratio test can be used
to compare the two models (cf. Train, 2009, Section 3.8.2.).

This test is implemented in the function apollo_lrTest, which is called as follows:

apollo_lrTest(model1,

model2)

> apollo_lrTest("Apollo_example_3", "Apollo_example_5")

LL par
Apollo_example_4 −4774.55 18
Apollo_example_5 −4770.48 19
D i f f e r en c e 4 .07 1

L ike l ihood r a t i o te s t−value : 8 .14
Degrees o f freedom : 1
L ike l ihood r a t i o t e s t p−value : 0 .00433

> apollo_lrTest("Apollo_example_3", model)

LL par
Apollo_example_4 −4774.55 18
Apollo_example_5 −4770.48 19
D i f f e r en c e 4 .07 1

L ike l ihood r a t i o te s t−value : 8 .14
Degrees o f freedom : 1
L ike l ihood r a t i o t e s t p−value : 0 .00433

Figure 9.3: Running apollo_lrTest
The function apollo_lrTest is flexible in the input it receives for model1 and model2. It can
either receive the names of models (i.e. as a character string) for which the output has previ-
ously been saved to disk, or the name of model objects stored in memory, i.e. as produced by
apollo_estimate. A mix of the two is also permissible, i.e. one previously stored model output
along with one kept in memory. The apollo_lrTest function will determine whether the models
have been estimated on the same data (in terms of observations and alternatives), and whether
one model uses fewer parameters and has a lower fit. The function is not able to determine
whether one model specification is in fact nested within the other, i.e. the user needs to decide
whether a likelihood ratio test is appropriate. The order in which the two models are given is
not relevant, as apollo_lrTest will reorder them in the appropriate way. In Figure 9.3, we illus-
trate the function by comparing the MNL model from Section 4.5.2, i.e. Apollo_example_3, and
the NL model from Section 5.1.1, i.e. Apollo_example_5. We show both the version where the
outputs for both models have been saved earlier1 as well as the version where the more general

1Note that the output needs to have been saved in the same directory.

Chapter 9. Pre and post-estimation capabilities 106

model has just been run and still exists in the R environment. This function is not suitable when
for example comparing a joint model with two separate models (e.g. RP-SP vs separate RP and
SP models) and the user in that case needs to calculate the LR test manually, which is of course
trivial.

9.5 Ben-Akiva & Swait test

A well known example of a non-nested test for model comparison is the Ben-Akiva & Swait test
(Ben-Akiva and Swait, 1986), which is based on adjusted ρ2. Specifically, we have that

P (ρ̄21 − ρ̄22 ≥ z) ≤ Φ
[
− (2zLL0 + df1 − df2)

1
2

]
, (9.1)

where z is the observed difference in adjusted ρ2, Φ is the cumulative standard normal distribution,
and df1 and df2 are the number of parameters for models 1 and 2. The two models need to both
be discrete choice, and estimated on the same data.

This test is implemented in Apollo using the function apollo_basTest, which is called as:

apollo_basTest(model1,

model2)

The function apollo_baseTest is flexible in the input it receives for model1 and model2. It
can either receive the names of models (i.e. as a character string) for which the output has
previously been saved to disk, or the name of model objects stored in memory, i.e. as produced
by apollo_estimate. A mix of the two is also permissible, i.e. one previously stored model
output along with one kept in memory. The apollo_basTest function will determine whether
the models have been estimated on the same data, and whether a ρ2 measure is available for both
models. The order in which the two models are given is not relevant, as apollo_basTest will
reorder them in the appropriate way. It then calculates the p-value for the Ben-Akiva & Swait
test.

In Figure 9.4, we illustrate the function by comparing the three-level NL model from Section
5.1.1, i.e. Apollo_example_5, and the CNL model from Section 5.1.2, i.e. Apollo_example_6.
We show both the version where the outputs for both models have been saved earlier2 as well as
the version where the more general model has just been run and still exists in the R environment.

9.6 Model predictions

A core capability of Apollo is that it covers model application (i.e. prediction) in addition to
estimation. This is implemented in the function apollo_prediction. The function is called as

2Note that the output needs to have been saved in the same directory.

Chapter 9. Pre and post-estimation capabilities 107

> apollo_basTest("Apollo_example_5","Apollo_example_6")

LL0 LL par adj . rho2
Apollo_example_5 −8196.02 −4770.48 19 0.4156
Apollo_example_6 −8196.02 −4742.25 20 0.4190
D i f f e r en c e 0 .00 28 .23 1 0.0034

p−value f o r Ben−Akiva & Swait t e s t : 2 .496 e−14

> apollo_basTest("Apollo_example_5",model)

LL0 LL par adj . rho2
Apollo_example_5 −8196.02 −4770.48 19 0.4156
Apollo_example_6 −8196.02 −4742.25 20 0.4190
D i f f e r en c e 0 .00 28 .23 1 0.0034

p−value f o r Ben−Akiva & Swait t e s t : 2 .496 e−14

Figure 9.4: Running apollo_basTest

follows:

forecast = apollo_prediction(model,

apollo_probabilities,
apollo_inputs,
prediction_settings)

The majority of these arguments have been discussed already. The only additional new argument
is prediction_settings, which is an optional list that can contain two entries:

modelComponent: name of the model component for which predictions are requested. This
argument is required for models with multiple components, and needs to be the name (string)
of one of the elements in the list P used inside apollo_probabilities.

nRep: number of Monte Carlo iterations used for models that require simulation for prediction
(e.g. MDCEV) (default is 100).

runs: number of runs of the prediction algorithm to use with random draws from the set of
parameters (default=1)

The application of this function to the Apollo_example_3.r mode choice model is illustrated
in Figure 9.5, which also shows how to look at changes in choices following a change in an
explanatory variable, as well as how elasticities can be calculated. We first run a prediction using
the model on the original data, in addition to 30 runs of the prediction on sets of random draws
from the vector of parameter estimates, where these are drawn using the full covariance matrix.
This allows us to get an indication of the level of uncertainty in the predictions. This process
shows the aggregated predicted demand (summing probabilities across observations) at the model
estimates, and also a 95% confidence interval for it, based on the additional repetitions. When
not including the setting for runs, the use of apollo_prediction produces a list of matrices
with one element per model component (for multi-component models), or a single matrix (for
single-component models). The matrix or matrices returned have one row per observation, and
with the following sets of columns:

Chapter 9. Pre and post-estimation capabilities 108

• ID of the individual
• Index of observations for the individual
• Set of J columns with predicted probabilities, one per alternative
• Probability for the chosen alternative

The output of apollo_prediction is slightly different for MDCEV models, including the
following columns.

• ID of the individual
• Index of observations for the individual
• Set of J columns with predicted continuous consumption, one per alternative
• Set of J columns with the s.d. of the predicted continuous consumption, one per alternative
• Set of J columns with predicted probability of (discrete) consumption, one per alternative
• Set of J columns with the s.d. of the predicted probability of (discrete) consumption, one

per alternative
• Set of J columns with predicted expenditure, one per alternative
• Set of J columns with the s.d. of the predicted expenditure, one per alternative

When including a value for runs that is larger than 1, apollo_prediction returns a list.
The first element in the list will be the matrix of prediction at the parameter estimates, using
the format above. This element is called at_estimates. The second element in the list, called
draws, is a 3-dimensional array, with dimensionality number of observations x 6J x runs. Each
slide on the first two dimensions has the same columns described above, except for the ID of the
individual and the index of the observation (i.e. first two columns in the list above are missing).
Each of these predictions come from different draws from the sets of parameter estimates.

Note that apollo_prediction uses the copy of the database stored within apollo_inputs,
and not the version of database that may be stored in the user environment (i.e. the Global
Environment). If the user wishes to calculate predictions for a modified database (for example,
to study how predictions change in a new scenario) we recommend doing it in three stages.
First, modify database in whatever way is needed. Then update apollo_inputs by running
apollo_inputs = apollo_validateInputs(), and finally call apollo_prediction.

We next run a prediction (without separate runs for confidence interval computation) for a
scenario where the cost of rail is increased by 1% (after which we reverse that change in the data).
This leads to a drop in the demand for rail, and an increase in the demand for other modes.

We next compare the before and after probabilities at the level of individual observations. For
the base predictions, we first need to extract the first element of the list, i.e. the predictions at
the actual model estimates. We then look at changes for individual people in the data, summaries
of changes, including for subsets of the data, before computing elasticities.

The output of apollo_prediction will depend on the underlying model component, but will
always include the ID and choice situation index for each row. In particular:

• For MNL, NL, CNL, DFT, OL and OP models, apollo_prediction will return the probability of
the chosen alternative, as well as the probability of each alternative at the observation level
(rather than person level). In particular, these models return a list containing one vector

Chapter 9. Pre and post-estimation capabilities 109

> predictions_base = apollo_prediction(model, apollo_probabilities, apollo_inputs, prediction_settings=list(runs=30))
Updating inputs . . . Done .

Running p r ed i c t i o n s from model us ing parameter e s t imate s . . .
Running p r ed i c t i o n s ac ro s s draws from the asymptotic d i s t r i b u t i o n f o r maximum l i k e l i h o o d es t imate s .
Pred i c t ing f o r s e t o f draws 1 / 3 0 . . .
. . .
P r ed i c t ing f o r s e t o f draws 3 0 / 3 0 . . .

Pred icted aggregated demand
At es t imate s Std . dev . Quanti le 0 .025 Quanti le 0 .975

car 1946.01 49 .03 1871.29 2038.45
bus 358.00 17 .67 323.56 384.08
a i r 1522.00 31 .38 1476.61 1593.72
r a i l 3173.98 34 .11 3114.28 3220.78

The output from apo l l o_pred i c t i on i s a l i s t with two elements : a matrix conta in ing the p r ed i c t i o n s at
↪→ the

est imated values , and an array with p r ed i c t i o n s f o r d i f f e r e n t va lues o f the parameters drawn from
↪→ t h e i r

asymptotic d i s t r i b u t i o n .
Seve ra l obs e rva t i on s per i nd i v i dua l detected based on the value o f ID . Se t t ing panelData in

↪→ apo l l o_contro l s e t
to TRUE.

Al l checks on apo l l o_cont ro l completed .
Al l checks on database completed .
Running p r ed i c t i o n s from model us ing parameter e s t imate s . . .
Pred icted aggregated demand at model e s t imate s

car bus a i r r a i l
Demand 1967.4 362.98 1535.1 3134.53

> ### Now imagine the cost for rail increases by 1%
> database$cost_rail = 1.01*database$cost_rail
> ### Rerun predictions with the new data
> apollo_inputs = apollo_validateInputs()
> predictions_new = apollo_prediction(model, apollo_probabilities, apollo_inputs)
Updating inputs . . . Done .

Running p r ed i c t i o n s from model us ing parameter e s t imate s Done .

Pred icted aggregated demand at model e s t imate s
car bus a i r r a i l

Demand 1967.4 362.98 1535.1 3134.53
> ### Return to original data
> database$cost_rail = 1/1.01*database$cost_rail

> ### work with predictions at estimates
> predictions_base=predictions_base[["at_estimates"]]
> ### Compute change in probabilities
> change=(predictions_new-predictions_base)/predictions_base

Not interested in chosen alternative now, so drop last column
> change=change[,-ncol(change)]
First two columns (change in ID and task) also not needed
> change=change[,-c(1,2)]
>### Look at person 9, who has all 4 modes available
> change[database$ID==9,]

car bus a i r r a i l
[1 ,] 0 .010361469 0.010361469 0.010361469 −0.018685663
[2 ,] 0 .012488949 0.012488949 0.012488949 −0.005077821

. . .
[1 4 ,] 0 .015476546 0.015476546 0.015476546 −0.006015603
>### Look at mean changes for subsets of the data, ignoring NAs
> colMeans(change,na.rm=TRUE)

car bus a i r r a i l
0 .01383311 0.01521340 0.01439624 −0.02132516

> colMeans(subset(change,database$business==1),na.rm=TRUE)
car bus a i r r a i l

0 .01246518 0.01281052 0.01070145 −0.01099004
> colMeans(subset(change,database$business==0),na.rm=TRUE)

car bus a i r r a i l
0 .01451181 0.01643493 0.01604469 −0.02640454

> colMeans(subset(change,(database$income<quantile(database$income,0.25))),na.rm=TRUE)
car bus a i r r a i l

0 .01748663 0.01906556 0.01873898 −0.03358834
> colMeans(subset(change,(database$income>=quantile(database$income,0.25))|(database$income<=quantile(database$income,0.75))), na.rm=TRUE)

car bus a i r r a i l
0 .01383311 0.01521340 0.01439624 −0.02132516

> colMeans(subset(change,(database$income>quantile(database$income,0.75))),na.rm=TRUE)
car bus a i r r a i l

0 .01080122 0.01171832 0.01068467 −0.01432130

>### Own elasticity for rail:
> log(sum(predictions_new[,4])/sum(predictions_base[,4]))/log(1.1)
[1] −1.257109

>### Cross-elasticities for other modes
> log(sum(predictions_new[,1])/sum(predictions_base[,1]))/log(1.1)
[1] 1 .098718
> log(sum(predictions_new[,2])/sum(predictions_base[,2]))/log(1.1)
[1] 1 .386133
> log(sum(predictions_new[,3])/sum(predictions_base[,3]))/log(1.1)
[1] 0 .8607355

Figure 9.5: Running apollo_prediction

Chapter 9. Pre and post-estimation capabilities 110

per alternative plus an additional vector for the chosen alternative, where each vector is
as long as the number of observations in the database, contain the probability of that
alternative. In the presence of continuous random heterogeneity, the draws are averaged
out before presenting the results.

• The discrete continuous models MDCEV and MDCNEV do not return probabilities, but instead
expected values of consumption for each alternative at the observation level. In particular,
they return a matrix detailing the expected (continuous) consumption for each alternative,
and a proxy for the probability of consuming each alternative (discrete choice), as well as the
standard deviations for both of these measurements. These outputs are calculated using the
efficient forecasting method proposed by Pinjari and Bhat 2010b, and its modification for
the MDCNEV model by Calastri et al. 2017. These methods are based on simulation (200
repetitions are used), and can therefore be computationally demanding. The probability of
consuming each alternative is calculated as the percentage of simulation repetitions in which
the alternative is consumed, and is not calculated using an analytical formula. Again, in the
presence of continuous random coefficients, the results are averaged across draws. If using
the optional argument runs in prediction_settings, the output will present standard
deviations across runs for both the mean predictions and the standard deviations due to the
use of draws inside the Pinjari and Bhat (2010b) algorithm.

• The EL (Exploded Logit) and Normal Density models do not return any predictions,
as it is not evident what precise outcome would be the most useful for the biggest share of
users.

9.7 Market share recovery for subgroups of data

With labelled choice data (or even unlabelled data where there may be strong left-right effects),
it can be useful to test after model estimation how well the choice shares in the data are recovered
by the model. With a full set of ASCs, a linear in attributes MNL model will perfectly recover
market shares at the sample level (see e.g. Train, 2009, Section 2.6.1.). This is however likely not
the case in subsets of the data, or indeed for more complex models, and this test can thus be
a useful input for model refinements. The function apollo_sharesTest is based on the “apply"
tables approach in ALogit (ALogit, 2016). It can be used for any of the discrete choice models
implemented in Apollo, and is called as follows:

apollo_sharesTest(model,

apollo_probabilities,
apollo_inputs,
sharesTest_settings)

The list sharesTest_settings has the following components:

alternatives: A named vector containing the names of the alternatives as defined by the user,
and for each alternative, giving the value used in the dependent variable in the data.

Chapter 9. Pre and post-estimation capabilities 111

choiceVar: A variable indicating the column in the database which identifies the alternative
chosen in a given choice situation. This is not a character variable (i.e. text) but the name use
to identify a column in the database. As we are now operating outside apollo_probabilities,
we need to use database$choice for example.

subsamples: The list subsamples is an optional input which contains one column for each
subset of the data to be used in the test, where it is possible for a given row to be included in
multiple subsets, i.e. the sum of the values across column vectors in subsamples may exceed
1.

modelComponent: The name of the model component for which predictions are requested. This
argument is required for models with multiple components, and needs to be the name (string)
of one of the elements in the list P used inside apollo_probabilities.

newAlts: Optional list describing the new alternatives to be used by apollo_sharesTest. This
should have as many elements as new alternatives, with each entry being a matrix of 0-1 entries,
with one row per observation, and one column per alternative used in the model.

newAltsOnly: An optional boolean variable, which, if set to TRUE, means that results will
only be printed for the ’new’ alternatives defined in newAlts, not the original alternatives
used in the model. Set to FALSE by default.

> sharesTest_settings = list()
> sharesTest_settings=list()
> sharesTest_settings[["alternatives"]] = c(car=1, bus=2, air=3, rail=4)
> sharesTest_settings[["choiceVar"]] = database$choice
> sharesTest_settings[["subsamples"]] = list(business=(database$business==1),+ leisure=(database$business==0))

> apollo_sharesTest(model,apollo_probabilities,apollo_inputs,sharesTest_settings)
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .

Running share p r ed i c t i on t e s t s

Pred i c t i on t e s t f o r group : bus ine s s (2310 obse rva t i on s)

car bus a i r r a i l A l l
Times chosen (data) 366.000 8 .000 771.000 1165.000 2310
Times chosen (p r ed i c t i on) 350.443 24.348 739.725 1195.484 2310
D i f f (p r ed i c t i on−data) −15.557 16.348 −31.275 30.484 0
t−r a t i o −1.093 3 .463 −1.846 1 .612 NA
p−va l 0 .275 0 .001 0 .065 0 .107 NA

Pred i c t i on t e s t f o r group : l e i s u r e (4690 obse rva t i on s)

car bus a i r r a i l A l l
Times chosen (data) 1580.000 350.000 751.000 2009.000 4690
Times chosen (p r ed i c t i on) 1595.563 333.656 782.280 1978.501 4690
D i f f (p r ed i c t i on−data) 15 .563 −16.344 31.280 −30.499 0
t−r a t i o 0 .606 −1.075 1 .601 −1.160 NA
p−va l 0 .544 0 .282 0 .109 0 .246 NA

Pred i c t i on t e s t f o r group : Al l data (7000 obse rva t i on s)

car bus a i r r a i l A l l
Times chosen (data) 1946.000 358.000 1522.000 3174.000 7000
Times chosen (p r ed i c t i on) 1946.006 358.004 1522.005 3173.984 7000
D i f f (p r ed i c t i on−data) 0 .006 0 .004 0 .005 −0.016 0
t−r a t i o 0 .000 0 .000 0 .000 0 .000 NA
p−va l 1 .000 1 .000 1 .000 1 .000 NA

Figure 9.6: Running apollo_sharesTest

The function produces one table per column in subsamples, along with an overall table for the
entire sample. In each table, the code reports the number of times an alternative is chosen in the

Chapter 9. Pre and post-estimation capabilities 112

data, the number of times the model predicts it to be chosen, the difference between prediction and
data, and a t-ratio and p-value for this difference. An example application of this function to the
SP mode choice data is included in Apollo_example_3.r. As we can see from Figure 9.6, in our
example, the model significantly overpredicts the rate at which business travellers choose bus and
underpredicts the rate at which they choose air. A revised model specification may thus incorpor-
ate shifts in these ASCs for business travellers. In addition to screen output, apollo_sharesTest
also invisibly returns the output so it can be saved into a data.frame, using e.g.
sharesTest_output=apollo_sharesTest(model,apollo_probabilities,apollo_inputs,sharesTest_settings).

9.8 Comparison of model fit across subgroups of data

An additional function is implemented to compare the performance of the estimated model for
different subsets of the data. The function apollo_fitsTest can be used for any models estimated
in Apollo, and is called as follows:

apollo_fitsTest(model,

apollo_probabilities,
apollo_inputs,
fitsTest_settings)

The list fitsTest_settings has the following component:

subsamples: The list subsamples is an optional input which contains one column for each
subset of the data to be used in the test, where it is possible for a given row to be included in
multiple subsets, i.e. the sum of the values across column vectors in subsamples may exceed
1.

The function calculates various statistics for the log-likelihood, as illustrated in Figure 9.7 for the
mode choice MNL model Apollo_example_3.r, where the last row in the output compares the
mean log-likelihood in the specific subsample to the mean in all other subsamples. Users need
to exercise caution when using this function in the case where the choice set size varies across
individuals in a manner that is correlated with the subgroups as the prediction performance for
individuals with smaller choice sets will be likely to be larger, all else being equal.

9.9 Functions of model parameters and associated standard errors

A key use of estimates from choice models is the calculation of functions of these estimates, for
example in the form of ratios of coefficients, leading to marginal rates of substitution, and in the
case of a cost coefficient being used as the denominator, willingness-to-pay (WTP) measures. It
is then important to be able to calculate standard errors for these derived measures, where this
can be done straightforwardly and accurately with the Delta method, as discussed by Daly et al.

Chapter 9. Pre and post-estimation capabilities 113

> fitsTest_settings = list()

> fitsTest_settings[["subsamples"]] = list()
> fitsTest_settings$subsamples[["business"]] = database$business==1
> fitsTest_settings$subsamples[["leisure"]] = database$business==0
> apollo_fitsTest(model,apollo_probabilities,apollo_inputs,fitsTest_settings)

Al l data bus ine s s l e i s u r e
Min LL per obs −1.45 −1.29 −1.45
Mean LL per obs −0.69 −0.59 −0.74
Median LL per obs −0.70 −0.61 −0.74
Max LL per obs −0.01 −0.01 −0.06
SD LL per obs 0 .28 0 .28 0 .27
mean vs mean o f a l l o the r s NA 0.14 −0.14

Figure 9.7: Running apollo_fitsTest

(2012a). The function apollo_deltaMethod is implemented for this purpose for a limited number
of operations, and is called as follows:

apollo_deltaMethod(model,

deltaMethod_settings)

The list deltaMethod_settings has the following components:

operation: A character object operation, which determines which function is to be applied
to the parameters. Possible values are:

sum: two-parameter function, with f (β1, β2) = β1 + β2
diff: two-parameter function, with f (β1, β2) = β1 − β2
ratio: two-parameter function, with f (β1, β2) = β1

β2

exp: one-parameter function, with f (β1) = eβ1

logistic: either one-parameter function, with f1 (β1) = eβ1

eβ1+1
and f2 (β1) = 1

eβ1+1
, or two-

parameter function, with f1 (β1, β2) = eβ1

eβ1+eβ2+1
, f2 (β1, β2) = eβ2

eβ1+eβ2+1
, and f3 (β1, β2) =

1
eβ1+eβ2+1

.
lognormal: two-parameter function giving the mean and standard deviation for a Lognor-
mal distribution on the basis of the mean and standard deviation for the logarithm

of the coefficient, i.e. with β = eN(β1,β2), we have f1 (β1, β2) = µβ = eβ1+
β2
2
2 and

f2 (β1, β2) = σβ = µβ
√
eβ

2
2 − 1

parName1: A character object giving the name of the first parameter.
parName2: A character object giving the name of the second parameter, optional if
operation=logistic.

multPar1: An optional numerical value used to multiply the first parameter, set to 1 if omitted.
multPar2: An optional numerical value used to multiply the second parameter, set to 1 if
omitted.

An example application of this function is included in Apollo_example_3.r, and is illustrated in
Figure 9.8 for the car value of travel time, i.e. the ratio between the car travel time and cost

Chapter 9. Pre and post-estimation capabilities 114

coefficients (in both minutes and hours) as well as for the difference between the car and rail travel
time coefficients. The values here are all calculated for an individual in the base socio-demographic
group.
> deltaMethod_settings=list(operation="ratio",parName1="b_tt_car",parName2="b_cost")
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t−r a t i o (0)

Ratio o f b_tt_car and b_cost : 0 .172 0.009719 17 .7
> deltaMethod_settings=list(operation="ratio",parName1="b_tt_car",parName2="b_cost",multPar1 = 60)
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t−r a t i o (0)

Ratio o f b_tt_car (mu l t i p l i ed by 60) and b_cost : 10 .32 0 .5832 17 .7

> deltaMethod_settings=list(operation="diff",parName1="b_tt_car",parName2="b_tt_rail")
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t−r a t i o (0)

D i f f e r en c e between b_tt_car and b_tt_rai l : −0.006056 0.001906 −3.178

Figure 9.8: Running apollo_deltaMethod

Only a limited number of functions of parameters are covered by apollo_deltaMethod. Rather
than relying on sampling based approaches such as the Krinsky & Robb method (Krinsky and
Robb, 1986) for calculating the standard errors for more complex functions, users who wish to
compute standard errors of other functions can for example use the R function deltamethod
from the alr3 package (Weisberg, 2005). This uses symbolic differentiation of the user provided
function.

9.10 Unconditionals for random parameters

After model estimation, it may be useful to an analyst to have at their disposal the actual values
used for random coefficients, especially if these included interactions with socio-demographics or
(non-linear) transforms that may lead to a requirement for simulation to calculate moments (as
in the semi-non-parametric approach of Fosgerau and Mabit 2013 used in Section 6.1.2). We look
separately at continuous random parameters and Latent Class.

9.10.1 Continuous random heterogeneity

For continuous random coefficients, the function apollo_unconditionals is called as follows:

unconditionals = apollo_unconditionals(model,

apollo_probabilities,
apollo_inputs)

The function produces a list as output, with one element per random coefficient, where this is a
matrix for inter-individual draws, and a cube with inter and intra-individual draws. Each time,
there is one row per individual, rather than one row per observation. The outputs from this
function can then readily be used for summary statistics or to produce plots. An example of

Chapter 9. Pre and post-estimation capabilities 115

this is included in apollo_example_16.r, and also illustrated in the discussion of conditionals in
Section 9.11.1.

Note that apollo_unconditionals uses the copy of the database stored within
apollo_inputs, and not the version of database that may be stored in the user environment
(i.e. the Global Environment). If the user wishes to calculate the unconditionals for a modi-
fied database (for example, to study how unconditionals change in a new scenario) we recom-
mend doing it in three stages. First, modify database in whatever way is needed. Then up-
date apollo_inputs by running apollo_inputs = apollo_validateInputs(), and finally call
apollo_unconditionals.

9.10.2 Latent class

For Latent Class models, the function apollo_lcUnconditionals is called as follows:

unconditionals = apollo_lcUnconditionals(model,

apollo_probabilities,
apollo_inputs)

The apollo_lcUnconditionals produces a list which has one element for each model parameter
that varies across classes, where these are given by lists, with one element per class. The entry
for each class could be either a scalar (if fixed coefficients are used inside the classes), a vector (if
interactions with socio-demographics are used), or a matrix or cube if continuous heterogeneity
is also incorporated. For the latter two cases, there is one row per individual, rather than one
row per observation. The final component in the list produced by apollo_lcUnconditionals is
a list containing the class allocation probabilities, with one element per class, where these could
again be scalars, vectors, matrices or cubes, depending on the extent of heterogeneity allowed for
by the user. An example of this is included in apollo_example_20.r, and also illustrated in the
discussion of conditionals in Section 9.11.2.

Note that apollo_lcUnconditionals uses the copy of the database stored within
apollo_inputs, and not the version of database that may be stored in the user environment
(i.e. the Global Environment). If the user wishes to calculate the unconditionals for a modi-
fied database (for example, to study how unconditionals change in a new scenario) we recom-
mend doing it in three stages. First, modify database in whatever way is needed. Then up-
date apollo_inputs by running apollo_inputs = apollo_validateInputs(), and finally call
apollo_lcUnconditionals.

9.11 Conditionals for random coefficients

There is extensive interest by choice modellers in posterior model parameter distributions, as
discussed in Train (2009, chapter 11) for continuous mixture models and Hess (2014) for Latent
Class. We implement functions for this for both continuous Mixed Logit and Latent Class models.

Chapter 9. Pre and post-estimation capabilities 116

9.11.1 Continuous random coefficients

Let β give a vector of taste coefficients that are jointly distributed according to f (β | Ω), where
Ω is a vector of distributional parameters that is to be estimated from the data. Let Yn give the
sequence of observed choices for respondent n (which could be a single choice), and let L (Yn | β)
give the probability of observing this sequence of choices with a specific value for the vector β.
Then it can be seen that the probability of observing the specific value of β given the choices of
respondent n is equal to:

L (β | Yn) =
L (Yn | β) f (β | Ω)∫

β L (Yn | β) f (β | Ω) dβ
(9.2)

The integral in the denominator of Equation 9.2 does not have a closed form solution, such that
its value needs to be approximated by simulation. This is a simple (albeit numerically expensive)
process, with as an example the mean for the conditional distribution for respondent n being
given by:

β̂n =

∑R
r=1 [L (Yn | βr)βr]∑R
r=1 L (Yn | βr)

, (9.3)

where βr with r = 1, . . . , R are independent multi-dimensional draws3 with equal weight from
f (β | Ω) at the estimated values for Ω. Here, β̂n gives the most likely value for the various
marginal utility coefficients, conditional on the choices observed for respondent n.

It is important to stress that the conditional estimates for each respondent themselves follow
a random distribution, and that the output from Equation 9.3 simply gives the expected value
of this distribution. As such, a distribution of the output from Equation 9.3 across respondents
should not be seen as a conditional distribution of a taste coefficient across respondents, but
rather a distribution of the means of the conditional distributions (or conditional means) across
respondents. Here, it is similarly possible to produce a measure of the conditional standard
deviation, given by:

β̃n =

√√√√√∑R
r=1

[
L (Yn | βr)

(
βr − β̂n

)2]
∑R

r=1 L (Yn | βr)
, (9.4)

with β̂n taken from Equation 9.3.
The calculation of posteriors for models with continuous random heterogeneity is implemented

in the function apollo_conditionals, which is called as follows:

conditionals = apollo_conditionals(model,

apollo_probabilities,
apollo_inputs)

3The term independent relates to independence across different multivariate draws, where the individual mul-
tivariate draws allow for correlation between univariate draws.

Chapter 9. Pre and post-estimation capabilities 117

The function produces a list object with one component per continuous random coefficient
(element defined in apollo_randCoeff). Each of these components is a matrix with one
row per individual, containing the ID for that individual, the mean of the posterior distri-
bution for that individual for the coefficient in question, and the standard deviation. As
apollo_conditionals uses the contents of apollo_randCoeff, any socio-demographic interac-
tions included in apollo_randCoeff will also be included in the calculation for the conditionals,
where, if these vary across observations for the same individual, they will be averaged across ob-
servations. Similarly, any intra-individual random heterogeneity will also be averaged out. This
function is only applicable for models using classical estimation, and also only models where
apollo_control$workInLogs==FALSE.

Note that apollo_conditionals uses the copy of the database stored within apollo_inputs,
and not the version of database that may be stored in the user environment (i.e. the Global
Environment). If the user wishes to calculate the conditionals for a modified database (for
example, to study how conditionals change in a new scenario) we recommend doing it in three
stages. First, modify database in whatever way is needed. Then update apollo_inputs by
running apollo_inputs = apollo_validateInputs(), and finally call apollo_conditionals.
> unconditionals = apollo_unconditionals(model, apollo_probabilities, apollo_inputs)
Uncondit iona l d i s t r i b u t i o n s computed

> conditionals <- apollo_conditionals(model, apollo_probabilities, apollo_inputs)
Your model conta ins int ra−i n d i v i dua l draws which w i l l be averaged over f o r c ond i t i o n a l s

> mean(unconditionals[["v_tt"]])
[1] 0 .418239
> sd(unconditionals[["v_tt"]])
[1] 0 .4741362

> summary(conditionals[["v_tt"]])
ID post . mean post . sd

Min . : 2439 Min . : 0 . 1 167 Min . : 0 . 04665
1 s t Qu. : 1 5308 1 s t Qu. : 0 . 2 6 9 5 1 s t Qu. : 0 . 1 3 1 3 6
Median :18533 Median : 0 . 3 361 Median : 0 . 16234
Mean :22181 Mean : 0 . 4162 Mean :0 . 19752
3 rd Qu. : 2 1948 3 rd Qu. : 0 . 4 6 6 3 3 rd Qu. : 0 . 2 2 1 2 6
Max. :84525 Max. : 2 . 1 597 Max. : 1 . 31119

> income_n=apollo_firstRow(database$hh_inc_abs, apollo_inputs)

Cal l :
lm(formula = cond i t i o n a l s [[" v_tt "]] [, 2] ~ income_n)

Res idua l s :
Min 1Q Median 3Q Max

−0.31753 −0.14661 −0.07131 0.05278 1.71282

Co e f f i c i e n t s :
Estimate Std . Error t value Pr(>| t |)

(I n t e r c ep t) 3 .510 e−01 2 .623 e−02 13.380 < 2e−16 ∗∗∗
income_n 8.527 e−07 2 .966 e−07 2 .875 0.00427 ∗∗
−−−
S i g n i f . codes : 0 '∗∗∗ ' 0 .001 '∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1

Res idual standard e r r o r : 0 .2592 on 386 degrees o f freedom
Mult ip le R−squared : 0 .02096 , Adjusted R−squared : 0 .01842
F−s t a t i s t i c : 8 .263 on 1 and 386 DF, p−value : 0 .00427

Figure 9.9: Running apollo_unconditionals and apollo_conditionals

Figure 9.9 illustrates the use of this function for the value of travel time coefficient in the Swiss
route choice MMNL (Apollo_example_16.r) example, where we show how the conditional means
can then for example also be used in regression analysis against characteristics of the individual,

Chapter 9. Pre and post-estimation capabilities 118

as discussed by Train (2009, chapter 11), in our case showing a significant impact of income on the
conditionals for the VTT. Note that as apollo_conditionals produces one value per individual,
we also need to reduce the dimensionality of the income variable to one per individual, using
apollo_firstRow. We also include a comparison with the unconditionals.

9.11.2 Latent class

It is similarly possible to calculate a number of posterior measures from Latent Class models.
A key example comes in the form of posterior class allocation probabilities, where the posterior
probability of individual n for class s is given by:

π̂ns =
πnsLn (βs)

Ln (β, πn)
, (9.5)

where Ln (βs) gives the likelihood of the observed choices for individual n, conditional on class s.
To explain the benefit of these posterior class allocation probabilities, let us assume that we

have calculated for each class in the model a given measure ws = βs1
βs2

, i.e. the ratio between the
first two coefficients. Using wn =

∑S
s=1 πnsws simply gives us a sample level mean for the measure

w for an individual with the specific observed characteristics of person n. These characteristics (in
terms of socio-demographics used in the class allocation probabilities) will however be common
to a number of individuals who still make different choices, and the most likely value for w for
individual n, conditional on his/her observed choices, can now be calculated as ŵn =

∑S
s=1 π̂nsws.

Finally, it might also be useful to produce a profile of the membership in each class. From
the parameters in the class allocation probabilities, we know which class is more or less likely to
capture individuals who posses a specific characteristic, but this is not taking into account the mul-
tivariate nature of these characteristics. Let us for example assume that a given socio-demographic
characteristic zc is used in the class allocation probabilities, with associated parameter γc, and
using a linear parameterisation in Equation 6.18. We can then calculate the likely value for zc for
an individual in class s as:

ẑcs =

∑N
n=1 π̂nszcn∑N
n=1 π̂ns

, (9.6)

where we again use the posterior probabilities to take into account the observed choices. Altern-
atively, we can also calculate the probability of an individual in class s having a given value κ for
zc by using:

̂P (zcs = κ) =

∑N
n=1 π̂ns (zcn = κ)∑N

n=1 π̂ns
. (9.7)

The calculation of posteriors for Latent Class models is implemented in the function
apollo_lcConditionals, which is called as follows:

conditionals = apollo_lcCconditionals(model,

apollo_probabilities,
apollo_inputs)

Chapter 9. Pre and post-estimation capabilities 119

This function is only applicable for Latent Class models that do not incorporate additional con-
tinuous random heterogeneity. The function produces a matrix, with one row per individual,
one column with the individual id, and one column per class, containing the individual-specific
posterior class allocation probabilities.

Note that apollo_lcConditionals uses the copy of the database stored within
apollo_inputs, and not the version of database that may be stored in the user environment (i.e.
the Global Environment). If the user wishes to calculate the conditionals for a modified database
(for example, to study how conditionals change in a new scenario) we recommend doing it in
three stages. First, modify database in whatever way is needed. Then update apollo_inputs by
running apollo_inputs = apollo_validateInputs(), and finally call apollo_lcConditionals.

apollo_inputs = apollo_validateInputs()

> unconditionals=apollo_lcUnconditionals(model, apollo_probabilities, apollo_inputs)

> vtt_class_a=unconditionals[["beta_tt"]][[1]]/unconditionals[["beta_tc"]][[1]]
> vtt_class_b=unconditionals[["beta_tt"]][[2]]/unconditionals[["beta_tc"]][[2]]
> vtt_unconditional=unconditionals[["pi_values"]][[1]]*vtt_class_a+unconditionals[["pi_values"]][[2]]*vtt_class_b

> conditionals=apollo_lcConditionals(model, apollo_probabilities, apollo_inputs)
> summary(conditionals[,2:3])

Class 1 Class 2
Min . : 0 . 000003 Min . : 0 . 0 000
1 s t Qu. : 0 . 1 5 1 5 59 1 s t Qu. : 0 . 1 2 0 9
Median :0 . 381015 Median : 0 . 6 190
Mean :0 . 483881 Mean : 0 . 5 161
3 rd Qu. : 0 . 8 7 9 0 99 3 rd Qu. : 0 . 8 4 8 4
Max. : 1 . 000000 Max. : 1 . 0 000

> summary(as.data.frame(unconditionals[["pi_values"]]))
c lass_a class_b

Min . : 0 . 3 924 Min . : 0 . 4 140
1 s t Qu. : 0 . 4 4 6 7 1 s t Qu. : 0 . 4 1 4 0
Median : 0 . 4 467 Median : 0 . 5 533
Mean : 0 . 4 839 Mean : 0 . 5 161
3 rd Qu. : 0 . 5 8 6 0 3 rd Qu. : 0 . 5 5 3 3
Max. : 0 . 5 860 Max. : 0 . 6 076

> vtt_conditional=conditionals[,2]*vtt_class_a+conditionals[,3]*vtt_class_b

> summary(vtt_unconditional)
Min . 1 s t Qu. Median Mean 3rd Qu. Max.

0 .4221 0.4544 0.4544 0.4766 0.5374 0.5374
> summary(vtt_conditional)

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .1885 0.2787 0.4153 0.4766 0.7118 0.7838

> commute_n = apollo_firstRow(database$commute,apollo_inputs)
> car_availability_n = apollo_firstRow(database$car_availability,apollo_inputs)

> post_commute=colSums(commute_n*conditionals)/colSums(conditionals)
> post_car_availability=colSums(car_availability_n*conditionals)/colSums(conditionals)

> post_commute
Class 1 Class 2

0.2629875 0.3077349
> post_car_availability

Class 1 Class 2
0.4465377 0.3154211

Figure 9.10: Running apollo_lcUnconditionals and apollo_lcConditionals
Figure 9.10 illustrates the use of this for the Swiss mode choice LC model

(Apollo_example_20.r). We first produce the output from the apollo_unconditionals_lc func-
tion to compare to the conditionals later on, and also calculate the value of travel time (VTT) in
each class, e.g. V TTa =

βt,a
βc,a

, where βt,a and βc,a are the time and cost coefficients, respectively,

Chapter 9. Pre and post-estimation capabilities 120

in class a. We then calculate the unconditional VTT obtained by taking the weighted average
across classes, where this varies across individuals as the class allocation probabilities do, i.e.
V TTn = πn,aV TTa + πn,bV TTb. We next calculate the conditional class allocation probabilities
using apollo_lcConditionals. As can be seen from the output, the means of the conditionals
is identical to the mean of the unconditionals, but the range is much wider. Similarly, when we
calculate the conditional VTT, we see a wider range for that too.

We finally use the conditional class allocation probabilities to calculate some posterior statistics
for class membership. To do this, we first retain only one value for the two socio-demographic
variables commute and car_availability for each individual (by using apollo_firstRow) to
make the dimensionality the same as the conditionals, before using the formula in Eq. 9.6 to
calculate the most likely value for these two variables for individuals in the two classes, given
the posterior class allocation probabilities. These posteriors class allocation probabilities can of
course then also be used in regression.

9.12 Summary of results for multiple models

It is often useful to produce an output file combining the estimates from multiple models run on
the same data. This is facilitated by the function apollo_combineResults. This function allows
the user to combine the results from a number of models (which can be larger than 2) for which
the outputs have all been saved in the same directory. The function is called as follows:

apollo_combineResults(combineResults_settings)

where the list combineResults_settings has the following contents:

modelNames: a vector of model names, e.g. c("Apollo_example_1", "Apollo_example_2",
"Apollo_example_3"). If this argument is not given, all models within the directory are used.

printClassical: if set to TRUE, the code will save classical standard errors as well as robust
standard errors, computed using the sandwich estimator (cf. Huber, 1967). This setting then
also affects the reporting of t-ratios and p-values (default is FALSE).

printPVal: if set to TRUE, p-values are saved (default is FALSE).
printT1: if set to TRUE, t-ratios against 1 are saved in addition to t-ratios against 0 (default
is FALSE).

estimateDigits: number of digits used for estimates (default set to 4).
tDigits: number of digits used for t-ratios (default set to 2).
pDigits: number of digits used for p-values (default set to 2).
sortByDate: sort models by date of estimation. If FALSE, order is given by user or alphabetical
if using all files (default is TRUE).

The function produces a csv file with the name model_comparison_time where time is a
numerical value defined by the current date and time. The file contains for each model the name,
the model description, the number of individuals and observations, the number of estimated
parameters, as well as four model fit statistics, namely the final log-likelihood, the adjusted ρ2

Chapter 9. Pre and post-estimation capabilities 121

measure, the AIC and the BIC. Note that not all these measures will be reported for all models,
e.g. ρ2 is only calculated for discrete choice models. The actual model outputs are then included
in a number of columns where this depends on the level of detail requested by the user as described
above (e.g. including classical t-ratios).

The function can be called as apollo_combineResults(), i.e. without any arguments. In
that case, the default settings are used for all arguments, and all model files within the dir-
ectory are combined into the output. An example of how to call this function is included in
apollo_example_6.r, combining the MNL, NL and CNL results.

Chapter 10

Debugging

Especially with advanced models, it is easy to make mistakes that lead to failures, most commonly
in estimation. A first check is to ensure that all the pre-estimation parts of the code were run and
that the memory was cleared before running the code. If that has been done, but the model still
fails, then the issue is likely in apollo_probabilities. While Apollo does spot and report some
errors, for others, the calculations will simply fail. This is simply a result of the fact that not all
user and data errors can be anticipated by programmers. Debugging a model then becomes an
important skill.

A good approach to debugging consists of following these three steps:

Step 1: Find the location of the problem
Step 2: Find out why it fails
Step 3: Solve the problem

To illustrate the process of debugging, apollo_example_24_bug.r is a version of the hybrid
choice model with ordered measurement models that contains a bug. Figure 10.1 shows that the
calculation of the initial log-likelihood fails for a large number of individuals.
> model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)
Test ing l i k e l i h o o d func t i on . . .
. . .
Log−l i k e l i h o o d c a l c u l a t i o n f a i l s at s t a r t i n g va lues
Af f ec ted i nd i v i dua l s :

ID LL
3 NaN
5 NaN

16 NaN
21 NaN
32 NaN
35 NaN
. . .

996 NaN
Error in apo l l o _estimate (apo l l o _beta , apo l l o _fixed , apo l l o \ _probab i l i t i e s , :

Log−l i k e l i h o o d c a l c u l a t i o n f a i l s at va lues c l o s e to the s t a r t i n g va lues
In add i t i on : Warning message :
In log (P [[j]]) : NaNs produced

Figure 10.1: Example of failure during model estimation
The first step is to identify the location of the failure. Unless Apollo reports an error message
relating to specific coding errors, the source of the problem is usually to do with calculations

122

Chapter 10. Debugging 123

leading to numerical problems, either probabilities at zero or not a real number. The function
apollo_probabilities uses an argument functionality as input, which can take different values
that are controlled by the functions that call apollo_probabilities. The value most useful for
debugging is "estimate" if this is where the problems occur.

The first step is to directly call apollo_probabilities from the console, with
functionality="estimate". This is illustrated in Figure 10.2. The output from this process
is a vector with the the contribution to the likelihood function for each individual. We see the
same warning message we obtained in estimation, i.e. In log(P) : NaNs produced. This relates
to the use of log of P inside apollo_probabilities, which works with the exponential of the sum
of logarithms of probabilities instead of the product of probabilities, as the former can avoid some
numerical issues.

To get some initial insights, we look at the first 30 individuals. This clearly shows us that
we obtain a likelihood that is not a real number for many individuals, which will then lead to a
failure to calculate the initial log-likelihood.
> L=(apollo_probabilities(apollo_beta, apollo_inputs, functionality="estimate"))
> L[1:30]
Warning message :
In log (P) : NaNs produced
> L [1 : 3 0]

1 2 3 4 5 6 7
7.989858 e−09 5.643820 e−09 NaN 1.183843 e−10 NaN 3.415758 e−10 7.045842 e−07

8 9 10 11 12 13 14
4.116410 e−09 9.571308 e−09 7.218330 e−11 1.255858 e−10 4.239593 e−10 1.048240 e−07 7.148491 e−09

15 16 17 18 19 20 21
7.272700 e−13 NaN 3.757502 e−10 9.788657 e−12 8.996220 e−11 2.404696 e−07 NaN

22 23 24 25 26 27 28
9.737283 e−11 3.491144 e−12 6.183129 e−10 2.278400 e−09 5.485415 e−10 4.065503 e−11 8.689893 e−09

29 30
6.857815 e−07 3.646095 e−10

Figure 10.2: Debugging step 1: testing with functionality=“estimate"

A first step is to now identify those individuals for which the likelihood calculation fails, and study
their choices. This is illustrated in Figure 10.3, where we only report the first row for each of the
attitudinal indicators per individual (given that these are repeated across the rows for different
choice tasks). We look at the choices for any individuals whose contribution to the log-likelihood
is NA, which could mean that the likelihood is zero, negative or not a real number. We clearly
see that all concerned individuals always give level 4 for the final indicator, and this provides our
first clue to the source of the problem.
The core step in debugging is now to identify the source of the failure. For this, we run the code
inside apollo_probabilities line by line. We can do this after setting a value for functionality,
in our case estimate, as this is where it fails. We do this up until the point before the separate
model components are combined into a joint model, to allow us to identify which component
fails. The process is illustrated in Figure 10.4. This clearly highlights issues with the final
measurement model, with negative probabilities being obtained for individuals who select level
4 for this indicator. Negative probabilities in an Ordered Logit model arise when the thresholds
do not rise monotonically, and the solution to the problem in this model is thus to correct the
starting values for the thresholds for the final indicator (which were set to -2, -1, 2, 1).
In this section, we have looked at a very specific case of failure, where this was a clear user error.
There are many reasons why a model could fail, and in other cases, it could be due to the data,

Chapter 10. Debugging 124

> IDs=unique(database$ID)
> failures=IDs[is.na(log(L))]

> database$best[database$ID%in%failures]
> failures=IDs[is.na(log(L))]

> database$best[database$ID%in%failures]
[1] 3 2 3 2 3 3 4 2 4 4 2 2 4 2 3 1 2 2 2 1 3 1 3 3 1 4 4 4 1 4 3 4 2 1 1 4 1 3 2 4 3 2 4

[4 4] 3 2 4 3 4 3 1 1 1 3 1 1 2 3 3 2 2 4 1 2 3 4 2 3 4 1 1 2 1 4 2 3 2 3 3 1 1 3 3 1 2 3 2
[8 7] 3 1 3 3 2 2 4 2 2 2 1 1 3 4 2 1 4 1 2 2 3 3 1 1 2 2 1 1 4 1 4 1 1 4 2 3 1 4 4 4 4 2 4

[1 3 0] 3 1 4 2 4 1 1 1 3 2 3 3 1 2 1 2 2 1 1 1 4 1 1 2 2 2 1 1 1 3 2 3 3 1 2 2 2 4 3 1 2 1 4
[1 7 3] 4 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 2 1 4 3 1 1 3 1 1 2 1 3 1 2 4 1 1 1 3 2 1 1 4 3 2 4

. . .

> database$attitude_quality[database$ID%in%failures&database$task==1]
[1] 1 4 1 2 2 3 1 3 2 1 3 3 3 1 3 5 5 5 4 3 1 3 3 3 1 3 3 4 1 3 3 2 1 3 3 3 4 4 3 5 1 5 1 3

[4 5] 1 3 3 3 4 1 1 3 4 1 1 1 4 5 1 1 1 3 2 1 3 3 3 3 3 3 3 1 3 1 3 1 1 1 2 3 5 2 2 3 3 1 5 1
[8 9] 3 5 1 3 2 3 2 1 3 4 5 3 1 3 1 5 4 4 3 4 5 3 4 5 5 2 1 5 2 3 5 3 2 3 3 1 3 3 3 3 1 5 1 3

[1 3 3] 3 3 4 3 3 3 3 1 1 3 1 3 1 2 2 3 4 1 3 1 3 3 1 1 1 4 3 3 2 2 2 3 3 4 3 1 1 4

> database$attitude_ingredients[database$ID%in%failures&database$task==1]
[1] 5 2 5 5 5 3 5 5 4 5 4 1 5 3 4 5 4 1 3 5 3 5 3 5 5 5 3 4 3 4 2 5 5 3 3 3 1 3 3 2 3 5 1 1

[4 5] 3 4 2 5 3 2 5 3 3 5 1 3 3 4 5 4 5 2 3 5 3 3 3 3 4 2 2 3 4 3 2 5 3 3 5 4 1 3 4 3 3 4 5 3
[8 9] 1 3 3 3 5 3 4 5 2 1 4 3 3 3 4 5 4 2 1 3 4 2 5 2 4 3 5 3 5 5 2 3 5 5 4 4 3 3 4 2 5 4 4 3

[1 3 3] 5 3 2 4 5 4 4 3 1 3 5 2 4 4 5 2 5 3 4 3 4 2 5 5 5 2 3 3 4 5 5 2 3 3 3 4 5 3

> database$attitude_patent[database$ID%in%failures&database$task==1]
[1] 1 4 1 2 1 2 1 1 3 2 4 5 1 1 2 1 4 5 4 3 3 2 2 3 1 1 3 1 2 3 1 2 2 1 1 3 4 3 3 5 3 3 3 4

[4 5] 4 1 3 5 3 1 3 1 3 1 1 3 3 3 1 3 1 3 3 2 1 3 4 1 3 4 3 1 1 2 1 2 3 3 1 1 3 1 3 2 1 4 1 5
[8 9] 3 3 1 3 3 3 3 1 4 5 5 5 2 4 1 2 3 1 5 1 4 3 3 5 2 1 3 4 3 5 1 2 1 3 5 1 1 5 5 2 2 3 1 1

[1 3 3] 1 1 3 2 3 3 1 3 4 2 2 4 4 2 2 5 3 2 2 3 2 4 1 2 1 3 3 3 1 2 3 3 1 2 5 1 2 1

> database$attitude_dominance[database$ID%in%failures&database$task==1]
[1] 4

[4 5] 4
[8 9] 4

[1 3 3] 4

Figure 10.3: Debugging step 2: analysing choices for respondents with zero likelihood value

> functionality="estimate"
> apollo_attach(apollo_beta, apollo_inputs)
. . .
> P[["choice"]] = apollo_mnl(mnl_settings, functionality)

> summary(P[["indic_quality"]][database$ID%in%failures&database$task==1])
Min . 1 s t Qu. Median Mean 3rd Qu. Max.

0 .00000 0.03051 0.21219 0.27807 0.53681 0.91847
> summary(P[["indic_ingredients"]][database$ID%in%failures&database$task==1])

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .00000 0.02925 0.17639 0.25340 0.45383 0.92321
> summary(P[["indic_patent"]][database$ID%in%failures&database$task==1])

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .00000 0.02301 0.15064 0.24031 0.41793 0.90898
> summary(P[["indic_dominance"]][database$ID%in%failures&database$task==1])

Min . 1 s t Qu. Median Mean 3rd Qu. Max .
−0.3829249 −0.2737148 −0.1352911 −0.1612505 −0.0433236 −0.0000036
> summary(P[["choice"]][database$ID%in%failures])

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .01573 0.16881 0.25001 0.25004 0.33119 0.48516

Figure 10.4: Debugging step 3: actual debugging

or the size of the model. The majority of issues manifest themselves through zero (or negative)
probabilities, either for some observations or some individuals, leading to a failure to calculate
the log-likelihood. There are three broad cases where this happens:

• The zero/negative probabilities could arise for some individual observations, where this
becomes clear by looking at e.g. the output of apollo_mnl, where probabilities are at the

Chapter 10. Debugging 125

observation level. This may be related to data or starting values.
• The zero/negative probabilities could also arise at the level of individuals, where they may

arise only after calling apollo_panelProd, where many small numbers will get multiplied
together, potentially leading to a product of zero. This issue can often be resolved by using
workInLogs=TRUE in apollo_control, which works with the sum of log-probabilities, rather
than the product of probabilities.

• Finally, in models with multiple components (e.g. hybrid choice), problems may apply to
some models only, as seen in our example, but the product across models that all pro-
duce probabilities that are greater than 0 may similarly lead to problems in case of many
components, where workInLogs=TRUE may again help.

Chapter 11

Extensions

11.1 Starting value search

In classical estimation, convergence to the global maximum of the likelihood function is not guar-
anteed by any optimization algorithm. While this is not a problem for simple linear in attributes
MNL models due to their concave likelihood function, it might be for other more complex models,
such as Mixed Logit or Latent Class models. A popular approach to reduce the probability of
reaching a poor local maximum is to start the optimization process from several different candid-
ate points (i.e. sets of parameters), and keep the solution with the highest likelihood. However,
this approach is very computationally intensive. To reduce its cost, algorithms have been proposed
to dynamically eliminate unpromising candidates.

The function apollo_searchStart implements a simplified version of the algorithm proposed
by Bierlaire et al. (2010), where the main difference in our implementation lies in the fact that
apollo_searchStart uses only two out of three tests on the candidates described by Bierlaire
et al. (2010). The implemented algorithm has the following steps, where these use a number of
inputs, which we will define below:

1. Randomly draw nCandidates candidates from an interval given by the user.
2. Label all candidates with a valid log-likelihood (LL) as active.
3. Apply bfgsIter iterations of the BFGS algorithm to each active candidate.
4. Apply the following tests to each candidate:

(a) Has the BGFS search converged?
(b) Are the candidate parameters after BFGS closer than dTest from any other candidate

with higher LL?
(c) Is the LL of the candidate after BFGS further than distLL from a candidate with

better LL, and is its gradient smaller than gTest?

5. Mark any candidates for which at least one of these tests is passed as inactive.
6. Go back to step 3 for the remaining candidates.

126

Chapter 11. Extensions 127

The apollo_searchStart function is called as follows:

apollo_beta = apollo_searchStart(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
searchStart_settings)

The function returns an updated list of starting values. The list searchStart_settings has the
following contents:

apolloBetaMin: a vector of the minimum possible value for each parameter (default is
apollo_beta-0.5).

apolloBetaMax: a vector of the maximum possible value for each parameter (default is
apollo_beta+0.5).

nCandidates: the number of initial candidates (default is 100).
maxStages: the maximum number of iterations of the algorithm, i.e. maximum number of
times the algorithm jumps from step 6 to 3 described below (default is 10).

bfgsIter: the maximum number of BFGS iterations to apply to each candidate in each itera-
tion of the main algorithm (default is 10).

smartStart: if TRUE, the Hessian of apollo_probabilities is calculated at apollo_beta, and
the initial candidates are drawn with a higher probability from the area where the Hessian
indicates an improvement in the likelihood. This adds a significant amount of time to the
initialization of the algorithm (default is FALSE).

dTest: the tolerance of test 4.2 described below (default is 1).
gTest: the tolerance for the gradient in test 4.3 described below (default is 10−3).
llTest: the tolerance for the LL in test 4.3 described below (default is 3).

The performance of the function varies across models and datasets and depends on the settings
used. In particular, we advise to adjust the bfgsIter, dTest, distLL and gTest parameters to
suit each user’s particular model characteristics, as their default values might not be suitable for
some model specifications. The running of the function is illustrated in Figure 11.1 for example
apollo_example_20.r, where only a small part of the output is shown.

11.2 Out of sample fit (Cross validation)

A common method to test for overfitting of a model is to measure its fit on a sample not used
during estimation, i.e. measuring out-of-sample fit. A simple way to do this is to split the available
dataset into two parts: an estimation sample, and a validation sample. The model of interest
is estimated using only the estimation sample, and then those estimated parameters are used
to measure the fit of the model (e.g. the log-likelihood of the model) on the validation sample.
Doing this with only one validation sample may however lead to biased results, as a particular
validation sample need not be representative of the population. One way to minimise this issue is

Chapter 11. Extensions 128

> apollo_beta=apollo_searchStart(apollo_beta, apollo_fixed,apollo_probabilities, apollo_inputs)
. . .
Creat ing i n i t i a l s e t o f 100 candidate va lues .
Ca l cu la t ing LL o f cand idates 0% 5 0% 1 0 0%

Stage 1 , 100 a c t i v e cand idates .
Est imating 20 BFGS i t e r a t i o n (s) f o r each a c t i v e candidate .
Candidate LLstart LL f in i sh GradientNorm . . . Converged

1 −1756 −1562 78.273 0
2 −1804 −1551 350.796 0

. . .
100 −1867 −1562 8 .991 0

Candidate 1 dropped .
Fa i l ed t e s t 1 : Too c l o s e to 22 26 29 40 44 46 58 72 75 78 91 95 97 98 100 in parameter space .

Candidate 3 dropped .
. . .
Candidate 100 dropped .
Fa i l ed t e s t 1 : Too c l o s e to 29 40 44 72 91 95 98 in parameter space .

Best candidate so f a r (LL=−1551.2)
. . .
. . .
Stage 3 , 8 a c t i v e cand idates .
Est imating 20 BFGS i t e r a t i o n (s) f o r each a c t i v e candidate .
Candidate LLstart LL f in i sh GradientNorm . . . Converged

15 −1587 −1580 404.556 0
42 −1582 −1549 2 .635 0
61 −1574 −1562 0 .517 0
76 −1583 −1562 9 .288 0
77 −1606 −1599 220.242 0
83 −1549 −1549 0 1
86 −1589 −1566 424.43 0
89 −1623 −1563 169.132 0

Candidate 15 dropped .
Fa i l e s t e s t 2 : Converging to a worse s o l u t i on than 83

. . .
Best candidate so f a r (LL=−1549.1)

[, 1]
asc_1 −0.0567
asc_2 0.0000
beta_tt_a −0.0553
beta_tt_b −0.3649
beta_tc_a −0.0787
beta_tc_b −2.2416
beta_hw_a −0.0423
beta_hw_b −0.0554
beta_ch_a −0.9951
beta_ch_b −2.8356
delta_a 0.7372
gamma_commute_a −0.5892
gamma_car_av_a 0.5894
delta_b 0.0000
gamma_commute_b 0.0000
gamma_car_av_b 0.0000

Figure 11.1: Running apollo_searchStart

to randomly draw several pairs of estimation and validation samples from the complete dataset,
and apply the procedure to each pair. This also allows the calculation of a confidence interval for
the out-of-sample measure of fit.

The function apollo_outOfSample implements the process described above. It is called as

Chapter 11. Extensions 129

follows:

apollo_outOfSample(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings,)
outOfSample_settings)

The only new input here is outOfSample_settings, which has the following contents:

nRep: Number of times a different pair of estimation and validation sets are to be extracted
from the full database (default is 10).

validationSize: Size of the validation sample. It can be provided as a fraction of the whole
database (number between 0 and 1), or a number of individuals (number bigger than 1). The
splitting of the database is done at the individual level, not at the observation level (default
is 0.1).

samples: An optional numeric matrix or data.frame with as many rows as observations in the
database, and as many columns as number of repetitions wanted. Each column represents a
re-sample, and each element must be a 0 if the observation should be assigned to the estimation
sample, or 1 if the observation should be assigned to the prediction sample. If this argument
is provided, then nRep and validationSize are ignored. Note that this allows sampling at
the observation rather than the individual level.

apollo_outOfSample saves to disk a file called name_outOfSample_params.csv, where name is
the name of the model as defined in apollo_control. This file contains the estimates from each of
the nRep estimation runs, as well as the estimation and out of sample log-likelihoods. It also saves
a file name_outOfSample_samples.csv which contains information on the samples. In addition,
the function prints to screen the per observation log-likelihood for each subsample, both for the
estimation sample and the holdout sample. The running of the function is illustrated in Figure
11.2 for example apollo_example_18.r.

Before running, apollo_outOfSample will look for existing name_outOfSample_params.csv
and name_outOfSample_samples.csv files in the working directory. If they are found, and are
consistent with the model at hand, then new repetitions will be added to those files. This means,
for example, that if the function is run twice, the output files will hold results for 20 repetitions.
This is a useful feature in case the cross-validation process gets interrupted, or if the user wants
to increase the number of repetitions a posteriori.

11.3 Bootstrap estimation

Apollo also allows the user to use bootstrap estimation. Given a number of repetitions, this
function generates as many new samples as requested, by sampling individuals (i.e. blocks of

Chapter 11. Extensions 130

> apollo_outOfSample(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

10 separate runs w i l l be conducted , each us ing a random subset o f 90% f o r e s t imat ion and the remainder
f o r v a l i d a t i on .

Number o f i n d i v i du a l s
− f o r e s t imat ion : 349
− f o r f o r e c a s t i n g : 39
− in sample (t o t a l) : 388
Preparing loop .
Estimated parameters and log−l i k e l i h o o d s f o r each sample w i l l be wr i t t en to :

Apollo_example_18_outOfSample_params . csv
The matrix d e f i n i n g the obse rva t i on s used in each r e p e t i t i o n w i l l be wr i t t en to :

Apollo_example_18_outOfSample_samples . csv

Estimation cyc l e 1 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 2 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 3 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 4 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 5 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 6 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 7 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 8 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 9 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Est imation cyc l e 10 (3141 obs .)
Est imation r e s u l t s wr i t t en to f i l e .
Proces s ing time : 1 .725478 mins

LL per obs in e s t imat ion sample LL per obs in va l i d a t i on sample
[1 ,] −0.4507688 −0.4252647
[2 ,] −0.4431325 −0.4959779
[3 ,] −0.4506121 −0.4252124
[4 ,] −0.4415683 −0.5075583
[5 ,] −0.4442535 −0.4805690
[6 ,] −0.4415376 −0.4739547
[7 ,] −0.4438256 −0.4906856
[8 ,] −0.4422680 −0.4652911
[9 ,] −0.4424068 −0.5012229

[1 0 ,] −0.4412086 −0.5083646

Figure 11.2: Running apollo_outOfSample

observations) with replacement from the original dataset. Parameters are then estimated for each
of these new samples. Finally, the covariance matrix of the sequence of estimated parameters
is calculated. This matrix is in itself an estimator of the covariance matrix of the parameter
estimates.

The function apollo_bootstrap implements the process described above. It is called as
follows:

apollo_bootstrap(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings,
bootstrap_settings)

Chapter 11. Extensions 131

The only new input here is bootstrap_settings, which has the following contents:

nRep: Number of bootstrap samples to use (default is 30).
samples: An optional numeric matrix or data.frame with as many rows as observations in the
database, and as many columns as number of repetitions wanted. Each column represents
a re-sample, and each element must be a 0 or a positive integer representing the number of
times that row is used in that given sample. If this argument is provided, then nRep is ignored.
Note that this allows sampling at the observation rather than the individual level.

seed: An optional positive integer used as seed for the bootstrap sampling generation process.
Default is 24. It is only used if samples is NA. Changing the seed allows drawing new samples
when re-starting a bootstrap process. This is useful when a bootstrap process has been
interrupted, or when additional repetitions are needed.

apollo_bootstrap returns a list with three elements. The first element is a matrix containing
the estimated parameters in each repetition, with as many rows as repetitions, and as many
columns as parameters. The second element is the correlation matrix between the estimated
parameters across repetitions. The third element is a vector with the log-likelihood at convergence
in each repetition.

apollo_bootstrap saves to disk a file called name_bootstrap_params.csv, where name is
the name of the model as defined in apollo_control$modelName. This file contains the es-
timates from each of the nRep estimation runs, as well as the log-likelihoods. It also saves a
file name_bootstrap_samples.csv which contains information on the samples and a file called
name_bootstrap_vcov.csv containing the covariance matrix. If the files already exist, for ex-
ample because the process got interrupted, the new repetitions will be added to the existing files.
So, if the function is run twice with the default settings, the name_bootstrap_params.csv file will
contain 60 sets of parameters. In addition, the function prints to screen the covariance matrix.
The running of the function is illustrated in Figure 11.3 for example apollo_example_18.r.

The function can also be called directly during estimation, as described in Section 4.6, by
adjusting the setting estimate_settings$bootstrapSE.

11.4 Expectation-maximisation (EM) algorithm

Apollo allows the user to estimate models using Expectation - Maximisation (EM) algorithms.
These are iterative algorithms were the updating of the parameters is usually achieved through
the maximization of a simplified version of the model likelihood function. EM algorithms do not
provide standard error estimates for the parameters. To obtain them, a Maximum Likelihood
estimation with the EM estimated parameters as the starting values is typically run afterwards.
This guarantees quick convergence and standard errors for all parameters. For a detailed discussion
of EM algorithms, see Train (2009, ch. 14).

The precise steps of these algorithms change depending on the kind of model, making them
hard to generalize and implement in a flexible way. Apollo includes EM routines for two types of
models, namely Latent Class (LC) models where all parameters vary across classes, and Mixed
Multinomial Logit (MMNL) models where all parameters are random, with a full covariance

Chapter 11. Extensions 132

> apollo_bootstrap(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

30 new data s e t s w i l l be const ructed by randomly sampling 388 i nd i v i dua l s with replacement from the
o r i g i n a l datase t .

Preparing bootst rap .
Parameters and LL in each r e p e t i t i o n w i l l be wr i t t en to : Apollo_example_18_bootstrap_params . csv
Vectors showing sampling ra t e f o r each obse rvat ion in each r e p e t i t i o n wr i t t en to :

Apollo_example_18_bootstrap_samples . csv

Estimation cyc l e 1 (3492 obs)
Est imation r e s u l t s wr i t t en to f i l e .
. . .
Est imation cyc l e 30 (3492 obs)
Est imation r e s u l t s wr i t t en to f i l e .

F in i shed bootst rap runs .
Parameters and LL f o r each r e p e t i t i o n wr i t t en to : Apollo_example_18_bootstrap_params . csv
Vectors showing sampling ra t e f o r each obse rvat ion in each r e p e t i t i o n wr i t t en to :

Apollo_example_18_bootstrap_samples . csv
Covariance matrix o f parameters wr i t t en to : Apollo_example_18_bootstrap_vcov . csv

Mean LL ac ro s s runs : −1553.99
Mean parameter va lues ac ro s s runs :

Estimate
asc_1 −0.0407
asc_2 0.0000
beta_tt_a −0.0875
beta_tt_b −0.1201
beta_tc_a −0.1049
beta_tc_b −0.7484
beta_hw_a −0.0403
beta_hw_b −0.0494
beta_ch_a −0.9999
beta_ch_b −2.0265
delta_a 0.1838
delta_b 0.0000

Covariance matrix ac ro s s runs :
asc_1 beta_tt_a beta_tt_b . . .

asc_1 3.119 e−03 −4.156e−04 −0.0006079 . . .
beta_tt_a −4.156e−04 1 .032 e−03 −0.0015649 . . .
beta_tt_b −6.079e−04 −1.565e−03 0.0070312 . . .
. . .

delta_a
asc_1 −6.761e−05

beta_tt_a 5.163 e−03
beta_tt_b −2.302e−02
beta_tc_a 2.088 e−03
beta_tc_b −2.137e−01
beta_hw_a −1.398e−03
beta_hw_b 1.458 e−04
beta_ch_a −1.168e−01
beta_ch_b −1.524e−02

delta_a 2.610 e−01
Bootstrap p roc e s s i ng time : 5 .735613 mins

Figure 11.3: Running apollo_bootstrap

matrix being estimated. These functions were added in Apollo v0.2.0 and users interested in the
manual coding of these routines are referred to the manual for earlier versions of Apollo.

11.4.1 EM algorithm for LC model

Apollo incorporates the function apollo_lcEM for latent class models, where this can be used
for models with any functional form inside the latent classes (i.e. not just MNL), as long as all
parameters vary across classes (i.e. no generic parameters). The function apollo_lcEM is called

Chapter 11. Extensions 133

via:

model = apollo_lcEM(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
lcEM_settings,
estimate_settings)

where we have already covered the first four arguments, as well as the final one. The further
optional argument lcEM_settings can contain the following entries:

stoppingCriterion: A numeric convergence criterion. The EM process will stop when im-
provements in the log-likelihood fall below this value (default is 10−5).

EMmaxIterations: An integer setting a maximum number of iterations of the EM algorithm
before stopping (default is 100).

postEM: A scalar which determines the number of tasks performed by this function after the
EM algorithm has converged. Can take values 0, 1 or 2 only. If value is 0, only the EM
algorithm will be performed, and the results will be a model object without a covariance
matrix (i.e. estimates only.). If value is 1, after the EM algorithm the covariance matrix of
the model will be calculated as well, and the result will be a model object with a covariance
matrix. If value is 2, after the EM algorithm, the estimated parameter values will be used as
starting value for a maximum likelihood estimation process, which will render a model object
with a covariance matrix. Performing maximum likelihood estimation after the EM algorithm
is useful, as there may be room for further improvement (default is 2).

silent: A boolean variable, which, when set to TRUE, means that no information is printed
to the screen during estimation (default is set to FALSE).

In addition to ensuring that all parameters vary across classes (or are included in
apollo_fixed, the only other requirement for using the apollo_lcEM function is that inside
the apollo_probabilities function, the loop over classes is defined as

for(s in 1 : length(pi_values)){
...

}

We first describe the EM estimation of a choice model with S different classes. The conditional
choice probability of class s (i.e. the in-class probability) is determined by a MNL model. All
preference parameters β are allowed to vary across classes. The class allocation is determined
by a MNL model using covariates Zn such as an individual’s income, interacted with a vector of
parameters γs in class s, causing the allocation probabilities πn,s to change from one individual to
the next. Estimation is achieved through an iterative five step process detailed below (cf. Train,
2009, ch. 14), drawing also on Bhat (1997).

Chapter 11. Extensions 134

1. Definition of starting values for γ0s and β0s parameters, where β0s should be different across
classes.

2. Calculate the likelihood of the whole model, using γ0 =
〈
γ01 , ..., γ

0
S

〉
, which gives π0 =〈

π01, ..., π
0
S

〉
, and β0 =

〈
β01 , ..., β

0
S

〉
and store this as L0.

3. Calculate class allocation probabilities conditional on observed choices for each class s ∈
{1, ..., S}, using the following expression.

h0n,s =
π0n,s(γ

0)Ln,s(β
0
s)∑S

s=1 π
0
n,s(γ

0)Ln,s(β0s)
(11.1)

where Ln,s(β0s) is the likelihood of the observed choice for individual n assuming class s,
and where π0n,s(γ0) is the class allocation probability for individual n for class s, using γ0

as parameters.
4. Update the parameters γ used in the class allocation model by maximising the allocation

probabilities weighted by h0n,s.

γ1 = argmaxγ(
N∑
n=1

S∑
s=1

h0n,slog(πn,s)), (11.2)

where this shows the maximisation of the log-likelihood of this component, where the like-
lihood is given by

∏N
n=1

∏S
s=1 π

h0
n,s
n,s (cf. Bhat, 1997).

5. Update the parameters βs for the within class model for each class by estimating separate
weighted MNL models, just as in the procedure in Section ??. Estimation of each MNL
model can be done using Maximum Likelihood, using h0n,s as weights.

β1s = argmaxβs(
N∑
n=1

h0n,slog(Ln,s)) ∀s (11.3)

6. Calculate the likelihood of the whole model, using γ1 =
〈
γ11 , ..., γ

1
S

〉
, which gives π1 =〈

π11, ..., π
1
S

〉
, and β1 =

〈
β11 , ..., β

1
S

〉
and store this as L1. If L1 − L0 < c, where c is a

convergence limit, say 10−5, then convergence has been reached. If convergence is not
achieved, set γ0 = γ1 and β0 = β1, and return to step 2.

We illustrate this example using a model similar to Apollo_example_20.r, , i.e. the two-class
LC model on the Swiss route choice data, with the difference being that the ASCs are now also
class-specific. This example is available in Apollo_example_28.r. The implementaion is shown
in Figure 11.4, with the estimation process in Figure 11.5.

11.4.2 MMNL model with full covariance matrix for random coefficients

In this subsection, we describe the EM estimation of a MMNL model in which all parameters
are random and where we estimate a full covariance matrix between them. More formally, we
assume the preference parameters to follow a joint random normal distribution β ∼ N(µ,Σ),
where transformations to other distributions are straightforward, as explained below.

The iterative process is described below (cf. Train, 2009, chapter 11).

Chapter 11. Extensions 135

apol lo_beta = c (asc_1_a = 0 ,
asc_1_b = 0 ,
. . .)

apo l lo_lcPars=func t i on (apollo_beta , apo l lo_inputs) {
l c pa r s = l i s t ()
l c pa r s [[" asc_1 "]] = l i s t (asc_1_a , asc_1_b)
. . .

r e turn (l c pa r s)
}

apo l l o_p r obab i l i t i e s=func t i on (apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .
Loop over c l a s s e s
f o r (s in 1 : l ength (pi_values)) {

Compute c l a s s−s p e c i f i c u t i l i t i e s
V=l i s t ()
V[[' a l t1 ']] = asc_1 [[s]] + beta_tc [[s]] ∗ tc1 + beta_tt [[s]] ∗ t t1 + beta_hw [[s]] ∗ hw1 + beta_ch [[s]] ∗

↪→ ch1
V[[' a l t2 ']] = asc_2 + beta_tc [[s]] ∗ tc2 + beta_tt [[s]] ∗ t t2 + beta_hw [[s]] ∗ hw2 + beta_ch [[s]] ∗

↪→ ch2

mnl_settings$V = V
mnl_settings$componentName = paste0 (" Class_ " , s)

Compute within−c l a s s cho i c e p r o b a b i l i t i e s us ing MNL model
P [[paste0 (" Class_ " , s)]] = apollo_mnl (mnl_settings , f u n c t i o n a l i t y)

Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P [[paste0 (" Class_ " , s)]] = apollo_panelProd (P [[paste0 (" Class_ " , s)]] , apo l lo_inputs , f u n c t i o n a l i t y)

}

Compute l a t en t c l a s s model p r o b a b i l i t i e s
l c_s e t t i n g s = l i s t (inClassProb = P, c las sProb=pi_values)
P [[" model "]] = apo l l o_lc (l c_se t t ing s , apol lo_inputs , f u n c t i o n a l i t y)

Prepare and return outputs o f func t i on
P = apollo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y)
re turn (P)

}

Figure 11.4: EM algorithm for Latent Class: setup

1. Define starting values for µ0 and Σ0.
2. Generate R multivariate draws for each individual n, say β0n,r for draw r, where β0n,r contains

one value for each random parameter.
3. Calculate the model likelihood at the individual level for each draw, i.e. L0 = Ln,r(β

0
n,r).

4. Calculate weights for each draw and for each individual using the following expression.

w0
n,r =

Ln,r∑
r Ln,r
R

∀r, n (11.4)

5. Update the means of the random parameters.

µ1 =
w0
n,rβ

0
n,r

RN
(11.5)

Where N is the number of individuals in the sample.
6. Update the covariance matrix of the random parameters, given by

Σ1 =
w0
n,rΣ

0
n,r

RN
, (11.6)

Chapter 11. Extensions 136

> model=apollo_lcEM(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)
The use o f apollo_lcEM has a number o f requirements . No checks are run f o r these , so the

user needs to ensure these cond i t i on s are met by t h e i r model :
1 : This func t i on i s only s u i t a b l e f o r s i n g l e component models , i . e . no use o f

apollo_combineModels or manual mu l t i p l i c a t i o n o f model components .
2 :Any parameters that vary ac ro s s c l a s s e s need to be inc luded in the d e f i n i t i o n o f random

parameters in apo l lo_lcPars .
3 :The e n t r i e s in the l i s t s in apo l lo_lcPars need to be i nd i v i dua l parameters , not

f unc t i on s th e r e o f .

Va l idat ing inputs o f l i k e l i h o o d func t i on (apo l l o_p r obab i l i t i e s)

Va l idat ing inputs o f l i k e l i h o o d func t i on (apo l l o_p r obab i l i t i e s)

I n i t i a l i s i n g EM algor i thm
Sta r t ing i t e r a t i o n : 1
Current LL : −1755.505

. . .

S ta r t i ng i t e r a t i o n : 35
Current LL : −1558.427
New LL : −1558.427
Improvement : 9 .141917 e−06

EM algor i thm stopped : improvements in LL sma l l e r than convergence c r i t e r i o n .
Continuing with c l a s s i c a l e s t imat ion . . .

Test ing l i k e l i h o o d func t i on . . .

Pre−proc e s s i ng l i k e l i h o o d func t i on . . .

S ta r t i ng main es t imat ion
I n i t i a l f unc t i on value : −1558.427
I n i t i a l g rad i ent value :

asc_1_a asc_1_b beta_tt_a beta_tt_b beta_tc_a beta_tc_b
−0.025103191 0.018312903 −0.246172021 −0.539511348 0.180421239 0.088650950

beta_hw_a beta_hw_b beta_ch_a beta_ch_b delta_a gamma_commute_a
0.323793074 −0.217498382 −0.078109679 −0.036779284 0.002144134 −0.002519300

gamma_car_av_a
−0.003000423

i n i t i a l va lue 1558.426648
i t e r 1 value 1558.426644
f i n a l value 1558.426644
converged
Estimated parameters :

Estimate
asc_1_a −0.08345
. . .
gamma_car_av_b 0.00000

Computing covar iance matrix us ing numerical methods (numDeriv) .
0% 2 5% 5 0% 7 5% 1 0 0%

Negative d e f i n i t e Hess ian with maximum e igenva lue : −8.782019
Computing s co r e matrix . . .

Summary o f c l a s s a l l o c a t i o n f o r LC model component :
Mean prob .

Class_1 0.4702
Class_2 0.5298

Ca l cu la t ing LL(0) . . .
Ca l cu la t ing LL o f each model component . . .

Figure 11.5: EM algorithm for Latent Class: estimation

where this requires calculating the covariance matrix Σ0
n,r at the individual draw level, given

by:

Σ0
n,r =

(
β0n,r − µ1

)
·
(
β0n,r − µ1

)′
. (11.7)

7. Calculate the likelihood of the whole model and check for convergence. Convergence is

Chapter 11. Extensions 137

achieved when the change on this likelihood is smaller than an pre-defined value. If conver-
gence is not achieved, return to step 2.

Apollo incorporates the function apollo_mixEM for MMNL models, where this can be used
for models with all parameters being random, and a full covariance matrix being estimated. The
function apollo_mixEM is called via:

model = apollo_mixEM(apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
lcEM_settings,
estimate_settings)

A specific consideration applies in that for apollo_mixEM, the entries in apollo_beta need to
be provided in a specific order. With K random parameters, the first K entries need to be the
means for the underlying Normals, followed by the elements of the lower triangle of the Cholesky
matrix, by row.

The further optional argument mixEM_settings can contain the following entries:

stoppingCriterion: A numeric convergence criterion. The EM process will stop when im-
provements in the log-likelihood fall below this value (default is 10−5).

EMmaxIterations: An integer setting a maximum number of iterations of the EM algorithm
before stopping (default is 100).

postEM: A scalar which determines the number of tasks performed by this function after the
EM algorithm has converged. Can take values 0, 1 or 2 only. If value is 0, only the EM
algorithm will be performed, and the results will be a model object without a covariance
matrix (i.e. estimates only.). If value is 1, after the EM algorithm the covariance matrix of
the model will be calculated as well, and the result will be a model object with a covariance
matrix. If value is 2, after the EM algorithm, the estimated parameter values will be used as
starting value for a maximum likelihood estimation process, which will render a model object
with a covariance matrix. Performing maximum likelihood estimation after the EM algorithm
is useful, as there may be room for further improvement (default is 2).

silent: A boolean variable, which, when set to TRUE, means that no information is printed
to the screen during estimation (default is set to FALSE).

transforms: A list, with one entry per parameter, showing the inverse transform to re-
turn from beta to the underlying Normal. E.g. if the first parameter is specified
as negative logormal inside apollo_randCoeff, then the entry in transforms should be
transforms[[1]]=function(x) log(-x). If any transforms are used, then they need to be
provided for all random parameters, even untransformed ones.

Figures 11.6 and 11.7 presents code implementing this algorithm for the EM analogue of
Apollo_example_15.r, i.e. using a MMNL model with correlated negative Lognormals on the

Chapter 11. Extensions 138

Swiss route choice data. This example is implemented in Apollo_example_29.r. The core steps
to focus on are the order of parameters in apollo_beta and the inverse transforms for a negative
Lognormal in mixEM_settings$transforms.
apol lo_beta = c (mu_log_b_tt =−3,

mu_log_b_tc =−3,
mu_log_b_hw =−3,
mu_log_b_ch =−3,
sigma_log_b_tt = 0.4880 ,
sigma_log_b_tt_tc = 0 ,
sigma_log_b_tc = 1.0369 ,
sigma_log_b_tt_hw = 0 ,
sigma_log_b_tc_hw = 0 ,
sigma_log_b_hw = 0.8141 ,
sigma_log_b_tt_ch = 0 ,
sigma_log_b_tc_ch = −0.3 ,
sigma_log_b_hw_ch = 0 ,
sigma_log_b_ch = −0.8298)

apol lo_randCoef f = func t i on (apollo_beta , apo l lo_inputs) {
randcoe f f = l i s t ()

r andcoe f f [[" b_tt "]] = −exp (mu_log_b_tt + sigma_log_b_tt ∗ draws_tt)
r andcoe f f [[" b_tc "]] = −exp (mu_log_b_tc + sigma_log_b_tt_tc ∗ draws_tt + sigma_log_b_tc ∗ draws_tc

↪→)
r andcoe f f [[" b_hw"]] = −exp (mu_log_b_hw + sigma_log_b_tt_hw ∗ draws_tt + sigma_log_b_tc_hw ∗ draws_tc

↪→ + sigma_log_b_hw ∗ draws_hw)
randcoe f f [[" b_ch "]] = −exp (mu_log_b_ch + sigma_log_b_tt_ch ∗ draws_tt + sigma_log_b_tc_ch ∗ draws_tc

↪→ + sigma_log_b_hw_ch ∗ draws_hw + sigma_log_b_ch ∗ draws_ch)

return (randcoe f f)
}

mixEM_settings = l i s t (t rans forms=l i s t (func t i on (x) log (−x) ,
func t i on (x) log (−x) ,
func t i on (x) log (−x) ,
func t i on (x) log (−x)))

Figure 11.6: EM algorithm for Mixed Logit: setup

11.5 Iterative coding of utilities for large choice sets

In the examples shown in this manual, the user codes the utilities of all alternatives one by
one. With very large choice sets, this may not be practical, and a user may create the utilities
recursively, for example. We illustrate this in Apollo_example_30.r. For this example, we
generate a large dataset with 100 alternatives, each described by two attributes: x1 and x2. In
the database, there are 200 columns specifying the value of x1 and x2 for each alternative, so that
-for example- column x1_30 corresponds to the value of x1 for alternative 30. In the example,
we assume the utility of each alternative contains no alternative specific constant (ASC). Figure
11.8 shows the definition of utilities, availabilities and the names of the alternatives in a recursive
way, inside apollo_probabilities.
In this example code, we make use of three specific R functions that are especially useful for this
context. Firstly, paste0 creates a string by combining the various elements that are passed to it
as input. This string can be used directly inside V as an index. It can also be used to refer to an
actual variable in combination with the function get. Finally, the function setNames is used to
assign the names from V to the vector with the codings for the alternatives.

In Figure 11.8, we define availability by explicitly extracting the relevant columns from the

Chapter 11. Extensions 139

> model=apollo_mixEM(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)
The use o f apollo_mixEM has a number o f requirements . No checks are run f o r these , so the

user needs to ensure these cond i t i on s are met by t h e i r model :
1 : This func t i on i s only s u i t a b l e f o r s i n g l e component models , i . e . no use o f

apollo_combineModels or manual mu l t i p l i c a t i o n o f model components .
2 : Al l parameters need to be random , and a f u l l covar iance matrix needs to be

est imated / s p e c i f i e d in apol lo_randCoef f .
3 : Al l random parameters need to be based on Normal d i s t r i b u t i o n s or t rans fo rmat ions

th e r e o f .
4 :With K random parameters , the order o f the e lements in ' apollo_beta ' needs to be as

f o l l ow s : K means f o r the under ly ing Normals , f o l l owed by the elements o f the lower
t r i a n g l e o f the Cholesky matrix , by row .

I n i t i a l i s i n g EM algor i thm
Val idat ing inputs o f l i k e l i h o o d func t i on (apo l l o_p r obab i l i t i e s)

I n i t i a l LL : −2026.718

Sta r t i ng i t e r a t i o n : 1
Current LL : −2026.718
New LL : −1983.751
Improvement : 42.96719

. . .

S ta r t i ng i t e r a t i o n : 91
Current LL : −1410.822
New LL : −1410.84
Improvement : −0.01809646

EM algor i thm stopped : improvements in LL sma l l e r than convergence c r i t e r i o n .
Continuing with c l a s s i c a l e s t imat ion . . .

Figure 11.7: EM algorithm for Mixed Logit: estimation

database. The availability columns follow a similar naming structure to the attributes, with -for
example- av_30 storing the the availability of alternative 30. Note that when referencing the
database we must point to the apollo_inputs$database, as opposed to simply database. If all
alternatives are always available, then we could just skip the definition of availability altogether,
and apollo_mnl would assume full availability.

Chapter 11. Extensions 140

List of u t i l i t i e s
J = 100
V = l i s t ()
for (j in 1 : J) V [[paste0 (" a l t " , j)]] = b1∗get (paste0 ("x1_" , j)) + b2∗get (paste0 ("x2_" , j))

Define se t t ings for MNL model component
mnl_s e t t i n g s = l i s t (

a l t e r n a t i v e s = setNames (1 : J , names(V)) ,
a v a i l = setNames (apo l l o_inputs$database [, paste0 ("av" , 1 : J)] , names(V)) ,
choiceVar = choice ,
V = V

)

Figure 11.8: Defining utilities for large choice sets (Apollo_example_30.r)

Chapter 12

Frequently asked questions

This chapter addresses some frequently asked questions (FAQ), divided into some broad categories.
Many other questions by individual users have been answered in the online forum (access via
www.apollochoicemodelling.com), and readers are invited to check existing posts there before
raising a new question.

12.1 General

What is Apollo?
Apollo is a software package for the R programming language. It is a set of tools to aid with
the estimation and application of choice models in R. Users are able to write their own model
functions or use a mix of already available ones. Random heterogeneity, both continuous and
discrete and at the level of individuals and observations, can be incorporated for all models.
There is support for both standalone models and hybrid model structures. Both classical
and Bayesian estimation is available, and multiple discrete continuous models are covered in
addition to discrete choice. Multi-threading processing is supported for estimation. A large
number of pre and post-estimation routines, including for computing posterior (individual-
level) distributions, are available. For examples, a manual, and a support forum, visit www.
ApolloChoiceModelling.com. For more information on choice models see Train (2009) and
Hess and Daly (2014) for an overview of the field.

12.2 Installation and updating of Apollo

How do I install Apollo?
Type install.packages("apollo") in the R console and press enter.
How do I update Apollo?
You update Apollo by re-installing it. Type install.packages("apollo")in the R console
and press enter.
Why do I get an error during installation that one of the packages is not available
for the R version I am running?

141

www.apollochoicemodelling.com
www.ApolloChoiceModelling.com
www.ApolloChoiceModelling.com

Chapter 12. Frequently asked questions 142

You are likely running an old version of R. Update R to the latest version and re-install Apollo.
You can get the latest version of R from https://cran.r-project.org/
Why does installation work on my home laptop/desktop computer but fail in my
company laptop/desktop computer
Often computers from big organisations will install R packages in shared libraries (that is in
folders in the private company network). R does not like its libraries to be in shared folders.
As a general recommendation, always install packages in local libraries, i.e. in a folder in the
local hard drive. You can see your active libraries by typing .libPaths(). This will list the
active libraries. If the local library is, for example, the second one in the list, you should keep
only that one by typing .libPaths(.libPaths()[2]). Then you should try installing Apollo
again.

12.3 Data

Why do I get the error message Error in file(file, "rt") : cannot open the
connection when trying to open the data?
This is most often caused by the user forgetting to set the working directory meaning that R
cannot find the data file. Or there could be a typo in the name of the data file.
Can I use “long” formatted data in Apollo?
No. Apollo requires data to be in a “wide” format, meaning that all necessary information to
calculate the likelihood of a single observation should be contained in a single row of the data.
In more practical terms, for an MNL model, this means that attributes for all alternatives
should be contained in each row. This format is the more common format in choice modelling,
uses less space, and is also more general in allowing for a mixture of different dependent
variables in the same data.

Is there a way to transform data in “long” format into “wide” format?
No such functionality is embedded in Apollo but is a straightforward task that can be done
in a spreadsheet tool or indeed in R.

Can I use a list of dummy variables to represent the choice? For example, for
a choice between three alternatives, with the third chosen use variables alt1=0,
alt2=0, alt3=1?
No. Apollo requires the user to encode the choice in a single variable. In this case, it would
be a variable (for example called “choice”) that could take only three values (for example 1, 2
or 3). This is easily created in R on the basis of separate dummy variables.
Can Apollo estimate models with aggregate share data?
Current versions of Apollo require one alternative to be chosen in each row in the data, rather
than using data where in each row, each alternative has a share of the choices, with these
summing to 1 across alternatives. This type of data can be accommodated either by users
coding their own model probability function inside Apollo or by replicating each row a number
of times. For example, in a binary case with shares of 65 − 35, the user could replicate the
row 100 times, with 65 rows choosing alternative A and 35 rows choosing alternative B.

https://cran.r-project.org/

Chapter 12. Frequently asked questions 143

Can I model “dual response” survey data with Apollo?
Yes, this is possible. We recommend beginning by modelling both questions separately, and
if there is evidence of the parameters being similar, then estimate them jointly using a scale
parameter between them. See apollo_example_22 to learn how to conduct joint estimation
in Apollo.

12.4 Model specification

What distributions are possible for random coefficients in Apollo?
There are no limits imposed on distributional assumptions. The user can specify whatever
distributions they want to use. Distributions can be coded as transformations of either Nor-
mal or Uniform draws. While transformations of Normal draws can be used for Lognormal,
Censored or Truncated Normals and Johnson SB, Uniform distributions open up even broader
scope as an inverse cumulative distribution function can be applied to the Uniform draws for
a huge set of possible distributions.
How can I capture the panel structure of my data in Apollo?
The treatment of panel data depends completely on the model being used. Whenever
the data contains multiple choices per individual, the analyst needs to use the func-
tion apollo_panelProd to group them together in estimation, except if using the setting
apollo_control$panelData=FALSE, in which case the data will be treated as if all observa-
tions came from separate individuals. In models without any random heterogeneity, such as
MNL, there is no explicit modelling of the correlation across choices for the same individual.
All that will happen by using apollo_panelProd is that the calculation of the robust stand-
ard errors recognises that the choices come from the same individual. In models with random
heterogeneity, such as Mixed Logit, the analyst can more explicitly account for the panel
structure, for example by specifying that the heterogeneity in any random taste coefficients
is across individuals, not within individuals, and/or by including an explicity pseudo-panel
effect error component. These issues are discussed in detail in the manual.
How can I avoid writing each utility function separately if I have tens or hundreds
of alternatives?
If the utilities all use the same structure but with different attributes for each alternative,
then the utility functions (and availabilities) can be written iteratively. For example, imagine
we have 100 alternatives, with attributes x1_j and x2_j for alternative j, then we can use:
V = list()
for(j in 1:100){
V[[paste0("alt",j)]] = (b1*get(paste0("x1_",j))+b2*get(paste0("x2_",j)))}

What starting values should I use for the thresholds in my Ordered Logit/Ordered
Probit model?
The thresholds need to be different from each other, and monotonically increasing. If the
thresholds are too wide, extreme ratings will obtain very low or zero probabilities. If the
thresholds are too narrow, extreme ratings will obtain very large probabilities. Either of these
can lead to estimation failures. Some trial and error is often required, but a good starting

Chapter 12. Frequently asked questions 144

point is to have thresholds symmetrical around zero, going to extreme values of +/-3.
How many draws should I use to estimate my models with random components?
There is no correct answer to this question. More draws is always better. The likelihood of
the model is given by an integral without a closed form solution, and the simulation based
appraoch only offers an approximation to this integral. Using a low number of draws means
that the approximation to this integral is poor. In simple words, it means that the model we
are estimating is not the one we think we are estimating. The parameter estimates will then
be biased for the model we actually specified.

But the log-likelihood of my model is better with fewer draws, so isn’t that
good?
The fact that the log-likelihood is better with fewer draws does not justify the use of fewer
draws. It is simply a reflection of the fact that fewer draws offers a poor approximation to
the real model. Once the number of draws is increased to a sufficient number, the model
fit will stay much more stable for further increases.
Why does my model converge with a low number of draws, but fail with a high
number of draws?
The fact that the model does not converge with a high number of draws shows that there
is a problem with the model. It is known that using a low number of draws can mean a
model that is overspecified still converges and can give every impression of being identified
(Chiou and Walker, 2007).
Can I at least use fewer draws if I use quasi-Monte Carlo draws?
In theory, yes, but again, more is better. Care is also required in deciding which type
of draws to use. Halton draws are an excellent option for models with a low number of
random parameters, but the colinearity issues with Halton draws means they should not
be used with more than say 5 random components.
To keep estimation cost under control, can I use a low number of draws in my
specification search and then reestimate the final model with a large number?
This is unfortunately a rather common practice, but it is misguided to think this is a good
approach or that it solves the issues arising with using low numbers of draws. The fact
that low numbers are used during the specification search means that the approximation
to the integral is poor at that stage. This in turn means that the decisions that are leading
to the final model specification may themselves be biased. While the final specification
is then estimated robustly with a large number of draws, it may in fact be inferior to
a specification that would have been obtained by using a high number throughout the
specification search.

Does Apollo allow me to separate scale heterogeneity from preference heterogen-
eity?
The notion that it is possible to separate out scale heterogeneity from other heterogeneity is
a myth, as discussed at length by Hess and Train (2017). Many models can allow for scale
heterogeneity, but no model can separate it from preference heterogeneity, and there is no
need to do so.

Chapter 12. Frequently asked questions 145

So can Apollo estimate the GMNL model?
The GMNL model is in fact not a new model or a more general model. It is simply a Mixed
Logit model with a very particular set of constraints applied to it. It is not more general
than Mixed Logit, which is the most general RUM model (cf. McFadden and Train, 2000)].
Given that Apollo allows full flexibility, users can of course specify the heterogeneity in
a Mixed Logit model using the GMNL style constraints, but should be mindful when it
comes to interpretation of the results given the above points.
So how about scale adjusted Latent Class (SALC)?
A SALC model is affected by the same issues as discussed by Hess and Train (2017) for
GMNL. It is not possible to separate out scale heterogeneity from other heterogeneity.
Users of Apollo can produce a SALC specification, which is simply a two layer Latent
Class model, by using S1 · S2 classes, allowing for S1 sets of β parameters and S_2 sets
of µ (scale) parameters, with an appropriate normalisation, and with the S1 · S2 classes
using all combinations of β and µscales model will be more general than a Latent Class
model with S1 classes with different β, but less general than a model with S1 · S2 classes
with different β.

12.5 Errors and failures during estimation

Why does Apollo complain that some function arguments are missing or incorrect?
There are different reasons for this, but the most likely cause is that the analyst has
used the wrong order of arguments. For the predefined functions, the order of arguments
passed to the function should be kept in the order specified for the function. For ex-
ample, if a function is defined to take two inputs, namely dependent and explanatory,
e.g. model_prob(dependent,explanatory), and the user wants to use choice and utility
as the inputs, then the function can be called as model_prob(choice,utility) but not as
model_prob(utility,choice). The latter change in order is only possible if the function
is called explicitly as model_prob(explanatory=utility,dependent=choice), which is the
same as model_prob(dependent=choice,explanatory=utility).
Why is my estimation failing with the message “Log-likelihood calculation fails at
starting values”?
This happens when, at the starting values, the likelihood of the model is zero or or cannot be
calculated for at least some people in the data. Apollo will report the IDs of these individuals.
Three common reasons exist for this problem:

Are the starting values feasible/appropriate for the model?
The most common reason for the initial likelihood calculation to fail is a problem with the
values used in apollo_beta. The starting values of some parameters may be invalid. For
example, the molde may be dividing by a parameter with an initial value equal to zero.
Also, different models have different requirements, for example the structural parameters
in nested and Cross-nested Logit models should be different from zero; the α parameters
in Cross-nested Logit models should be between zero and one; the γ and σ parameters in
MDCEV should be greater than zero; the thresholds in Ordered Logit and Probit models

Chapter 12. Frequently asked questions 146

should be different and monotonically increasing; the variance of linear regressions should
be positive; etc. Another potential cause (less common than the previous one) is that
initial values are too poor, leading to an initial likelihood too close to zero, which in turn
leads to an infinite log-likelihood. To avoid this, the user should look for better starting
values, either by estimating a simpler model and using those estimates as starting values,
or using the apollo_searchStart function.
Does the data contain many observations for each person and/or does the model
use several components (i.e. hybrid choice)?
When multiplying together the probability of many individual observations at the person
level (using apollo_panelProd), it is possible that the product becomes too close to zero
for R to store it as a number. The same can happen when combining many individual model
components using apollo_combineModels. The risk of this is greater in case of models
with low probabilities, such as in the case of large choicesets or many observations per
individual. A solution to this problem is to use set workInLogs=TRUE in apollo_control.
This ensures that all calculations are made with the logarithms of probabilities, avoiding
the issue of multiplying many small numbers. The use of this setting is however only
recommended when necessary as it will slow down estimation.
Does the model use lognormal distributions for random coefficients?
The value of lognormally distributed coefficient is given by β = exp

(
µln(β) + σln(β)ξ

)
,

or β = −exp
(
µln(−β) + σln(−β)ξ

)
in the case of a negative lognormal distribution. The

estimated parameters thus relate to the mean and standard deviation of the logarithm of
β (or the logarithm of −β). A common mistake is to start µln(β) at zero, just as in the
case of a normally distributed β. With the exponential, this will lead to a large starting
value for β, which can result in numerical problems. In the case of lognormally distributed
coefficients, it is thus advisable to use a large negative value for the starting value of the
mean of the logarithm of the coefficient, e.g. starting µln(β) at something like −3 or lower,
as this would imply starting the median of β close to zero.

Why do I get an error saying that one of my parameters does not influence the
likelihood, even though I am using it in a utility function?
There may be several reasons for this. A common mistake is when writing utilities (or any
other code statement) across multiple lines, the link between lines is missing and only the first
one is considered. To split a statement across multiple lines, the incomplete lines should finish
with an operator. For example:
U[["A"]] = b0 + b1*x1
+ b2*x2
will ignore the effect of b2*x2. Instead, it should be:
U[["A"]] = b0 + b1*x1 +
b2*x2
It could also be that the attribute associated with the parameter does not vary across the
utility functions, or that the same constant is included in all utility functions. Much less
common, it could be that the starting probabilities in your model are so small that due to
rounding errors, they are equal to zero, and changes in parameter values also lead to small

Chapter 12. Frequently asked questions 147

probabilities not different from zero. This is more likely to happen in complex models with
many observations per individual. In this case, we recommend (1) to begin by estimating a
simple model (e.g. constants only) to obtain better starting values, and (2) to set the option
apollo_control$workInLogs=TRUE. This last option will increase numerical precision at the
expense of estimation speed.
Estimation of my model failed after a long time. Have I lost all the information?
If estimation was run using BFGS, Apollo will produce a csv file with the parameter val-
ues at each iteration in the working directory, using the name given to the model inside
apollo_control$modelName.
Why does my estimation fail, saying the maximum number of iterations has been
reached?
The default number of iterations for estimation is set to 200. This can be increased in
estimate_settings$maxIterations. In general however, if a model has not converged after
200 iterations, this could be a sign of problems with the model. Inspecting the iterations file
produced during estimation can help diagnose if there is a problem or if more iterations are
required.

12.6 Model results

Why am I getting Inf or NaN for standard errors?
There are several main reasons why this could happen:

The model could have theoretical identification issues
To diagnose these issues is not easy, as requirements change depending on the particular
structure of the model. For example, in random utility models, only difference in utility
matters, so the constant of at least one alternative must be fixed to zero. Similarly, a
normalisation is required for categorical variables. In Hybrid choice models, the variance
of each structural equation (or the slope of one measurement equation per latent variable)
should be fixed to one.
The model could be too complex for the data, leading to empirical identification
issues
Many users fall into the trap of believing that choice models are easy tools and that the
most complex model should always be used. Instead, analyst should always begin by
estimating the simplest possible model and moving progressively towards more complex
formulations. This will help troubleshooting any potential identification problems. In
Mixed Logit for example, analyst should always start by introducing only a few random
coefficients, leaving the rest as fixed, and progressively making the model more general.
Differences in scale between parameters can complicate the calculation of the
standard errors
Calculating standard errors requires inverting the Hessian matrix at the estimated value
of the parameters. Depending on the model, this Hessian is calculated using numerical
derivatives, looking at small changes to either side of the estimates. Some of these could
result in numerical failures. Similarly, inverting the Hessian itself can be challenging due to

Chapter 12. Frequently asked questions 148

numerical precision issues in this case. This can be diagnosed by looking at model$hessian.
If it has very big and very small values, inverting it could be problematic. In these cases,
using the estimate_settings$scaling option can help. This is an optional setting that
can be given to the apollo_estimate function to scale parameters and therefore avoid
numerical issues.
The calculation of numerical derivatives could lead to some zero probabilities
Especially with complex models, the calculation of the numerical derivatives can be affected
by a small number of calculations leading to zero probabilities. Greater stability can in this
case be obtained by using bootstrapping for estimating the standard errors (i.e. setting
estimate_settings$bootstrapSE=TRUE), obviously at the cost of increased estimation
time. Similarly, depending on the data used, setting workInLogs=TRUE in apollo_control
could help.

Why is my estimate of the standard deviation negative?
This happens if a random coefficient is coded as randCoeff[["beta"]]=mu+sigma*draws
where draws is a random variate that is symmetrical around zero.

So should I constrain the standard deviation to be positive?
There is no reason for doing so. The results will be the same if the random variate draws
is symmetrical around zero. Imposing constraints will also make estimation harder. And
of course, if a user wants to allow for correlation between individual coefficients, then the
parameters multiplying the draws need to be able to be positive or negative.

Why are my structural/nesting parameters greater than one or smaller than zero
in Nested or Cross-nested Logit?
Apollo does not constrain the structural parameters in Nested (NL) and Cross-nested (CNL)
Logit models to be between zero and one. If, after estimation, the structural parameters are
outside of this interval, this could be evidence of the nesting structure not being supported by
the data. The userYouould then try a different nesting structure.

So should I constrain them to be between 0 and 1?
In general, while possible using the settings in maxLik, we do not recommend imposing
constraints. If unconstrained estimation yields an estimate outside the bounds of the
interval of acceptable values, then it is highly likely that the use of constraints will lead to
an estimate that goes to one of the bounds of the interval that the parameter is constrained
in. The model fit will be inferior too and the real problem will simply be masked by the
constraints.
So how about constraints on other parameters, such as standard deviations or
γ parameters in MDCEV?
It is common practice to use exponential transforms for parameters that are only allowed
to be positive, e.g. using γ = exp (γ0), with γ0 being estimated. We have found that
this often slows down estimation and does not necessarily lead to the same solution as
unconstrained estimation even if the latter finds an acceptable solution. The reason for
the problem is that small changes to γ0 will lead to large changes in γ, making estimation
difficult, especially with numerical derivatives.

Chapter 12. Frequently asked questions 149

How do I calculate hit rates for my model in Apollo?
We made the decision not to include hit rates in Apollo outputs. They really offer a
very distorted view of the results. Models give probabilities in prediction. If, for each
task, an analyst just looks at what alternative has the highest probability, then they’re
ignoring the error term in the model. To put it succinctly, imagine you have a case with
2 alternatives, and we have 2 models. Model A gives a probability of 51% for the chosen
alternative in 70% of cases in model 1, but a probability of only 10% in the remaining
30% of cases. Model B gives a probability of 49% for the chosen alternative in 70% of
cases in model 1, but a probability of 90% in the remaining 30% of cases. Using a hit rate
would give model A a figure of 70%, and model B a figure of 30%. But clearly model B
is far superior. That’s why outside marketing, choice modellers work with probabilities of
correct prediction instead if they want a percent measure like this. And that would give
0.387 for model A but 0.613 for model B.

Appendix A

Apollo versions: timeline, changes and
backwards compatibility

Version 0.0.6 (13 March 2019)

This is the first fully functioning release of Apollo.

Version 0.0.7 (8 May 2019)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Inputs changed for apollo_choiceAnalysis
Functions affected: apollo_choiceAnalysis
Detailed description: inputs changed so function can be called prior to
apollo_validateInputs
Backwards compatibility of code: function call changed from version 0.0.7 onwards

Constraints for classical estimation
Functions affected: apollo_estimate
Detailed description: Apollo now allows the user to include a list called constraints in
estimate_settings for use with BFGS for classical model estimation.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Scaling of parameters during model estimation
Functions affected: apollo_estimate
Detailed description: scaling of model parameters can be used during estimation

150

Backwards compatibility of code: no backwards compatibility issues for existing functions

Validation output
Functions affected: apollo_estimate
Detailed description: Apollo no longer reports that all pre-estimation checks were passed for
a model component and instead only reports if there are an issues.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Bayesian estimation produces model$estimate
Functions affected: apollo_estimate, apollo_prediction, apollo_llCalc
Detailed description: until version 0.0.6, Bayesian estimation in Apollo did not produce a
model$estimate output. We have retained the various existing outputs, but in addition,
model$estimate is now produced, combining non-random parameters with individual
specific posteriors for random parameters. This now allows the user to use
apollo_prediction and apollo_llCalc on such outputs, where care is of course required
in interpretation of outputs based on posterior means.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Changes to Apollo examples:

Examples affected: apollo_example_1.r and apollo_example_2.r
Detailed description: Use of apollo_choiceAnalysis added
Backwards compatibility of examples: affected part only works from version 0.0.7 onwards

Examples affected: apollo_example_12.r
Detailed description: Scaling in estimation implemented
Backwards compatibility of examples: only works from version 0.0.7 onwards

Examples affected: apollo_example_26.r
Detailed description: HB prediction component added
Backwards compatibility of examples: affected part only works from version 0.0.7 onwards

Bug fixes:

apollo_speedTest
This function was unintentionally hidden from users in previous versions

151

Version 0.0.8 (9 September 2019)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Bootstrap estimation added
Functions affected: apollo_bootstrap, apollo_estimate
Detailed description: the user can now perform bootstrap estimation. This can also be
called directly with apollo_estimate during estimation
Backwards compatibility of code: new function from version 0.0.8 onwards, new optional
arguments for apollo_estimate, but function called in the same way

Allow user to use subset of rows for analysis of choices
Functions affected: apollo_choiceAnalysis
Detailed description: An additional rows argument can be entered into
choiceAnalysis_settings.
Backwards compatibility of code: optional argument added from version 0.0.8 onwards, but
function called in the same way

Outputs changed for apollo_choiceAnalysis
Functions affected: apollo_choiceAnalysis
Detailed description: outputs changed so that t-test value is reported instead of p-value,
and order of outputs is changed
Backwards compatibility of code: outputs changed from version 0.0.8 onwards, but function
called in the same way

Allow user to change name and location of outside good in MDCEV and
MDCNEV
Functions affected: apollo_mdcev and apollo_mdcnev
Detailed description: An additional outside argument can be entered into mdcev_settings
and mdcnev_settings with the name of the outside good which can now differ from
outside. It also no longer needs to be in first position in the list of alternatives.
Backwards compatibility of code: optional argument added from version 0.0.8 onwards, but
function called in the same way

No need to define superfluous γ for outside good in MDCEV and MDCNEV
Functions affected: apollo_mdcev and apollo_mdcnev
Detailed description: The user no longer needs to create a gamma term for the outside good.
Backwards compatibility of code: function called in the same way

152

Chosen unavailable alternatives have a likelihood of zero
Functions affected: apollo_mnl, apollo_mdcev, apollo_mdcnev
Detailed description: MNL, MDCEV and MDCNEV now return a likelihood equal to zero
for chosen alternatives that are not available. This change is only relevant if
apollo_control$noValidation is TRUE.
Backwards compatibility of code: new likelihood values for unavailable chosen alternatives
on MNL, MDCEV and MDCNEV models from version 0.0.8 onwards

Allow user to specify number of outliers to report
Functions affected: apollo_modelOutput, apollo_saveOutput
Detailed description: In addition to specifying TRUE/FALSE for printOutliers, the user can
provide the number of outliers to report (instead of the default of 20).
Backwards compatibility of code: optional argument added from version 0.0.8 onwards, but
function called in the same way

Ability to define estimation/validation subsets for apollo_outOfSample
Functions affected: apollo_outOfSample
Detailed description: the user can now provide a matrix or data.frame describing which
observations are to be used in the estimation and validation subsets
Backwards compatibility of code: optional argument added from version 0.0.8 onwards, but
function called in the same way

Individual IDs and choice scenario numbers added in predictions
Functions affected: apollo_prediction
Detailed description: The output from apollo_prediction now includes the IDs and choice
observation numbers as the first two columns.
Backwards compatibility of code: function called in the same way

Changes to Apollo examples:

Examples affected: apollo_example_3.r, apollo_example_11.r, apollo_example_13.r,
apollo_example_22.r, apollo_example_24.r, apollo_example_25.r,
apollo_example_26.r
Detailed description: apollo_prediction now includes the IDs and observation numbers as
the first two columns, meaning some output is shifted.
Backwards compatibility of examples: use of outputs needs adjusting to reflect change in
columns

Bug fixes:

apollo_combineResults
This function failed in earlier versions when using only a single model

153

apollo_firstRow
This function mistakenly replicated the first row for each person Tn times

apollo_estimate with scaling and HB
HB estimation failed in earlier versions for models without any random parameters

154

Version 0.0.9 (23 October 2019)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Additional diagnostic message for HB estimation
Functions affected: apollo_estimate
Detailed description: the RSGHB package used for Bayesian estimation left censors likelihood
values at the individual level to avoid numerical issues. This has the undesired side effect of
mis-specified models still running, and a warning message is now displayed when censoring
has been used
Backwards compatibility of code: function called in the same way

Pre-estimation tests to ensure all parameters affect likelihood function
Functions affected: apollo_estimate
Detailed description: unless apollo_control$noDiagnostics==TRUE, a pre-estimation
check is used to ensure that there are no parameters in apollo_beta for which changes do
not lead to changes in the model likelihood
Backwards compatibility of code: function called in the same way

Changes to Apollo examples:

None

Bug fixes:

apollo_deltaMethod
This function had a small error in the calculation for standard errors for logistic transforms

apollo_estimate with HB and only non-random parameters
HB estimation failed in earlier versions for models without any random parameters if using
scaling

155

Version 0.1.0 (16 March 2020)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

R version requirement changed to 3.6.0
Functions affected: all of Apollo
Detailed description: users running Apollo version 0.1.0 require at a minimum R version
3.6.0
Backwards compatibility of code: no changes to actual functions

Improved error reporting and printing
Functions affected: majority of functions
Detailed description: warnings are now generally displayed at the point they apply rather
than after estimation. In addition, numerous new checks have been implemented for many
of the functions.
Backwards compatibility of code: no backwards compatibility issues

Referring to database inside apollo_probabilties no longer allowed
Functions affected: all functions that call apollo_probabilties
Detailed description: the user is not allowed to refer to database by name inside
apollo_probabilties. There is no reason for doing so as the database is attached and all
elements therein can be referred to directly
Backwards compatibility of code: this should not affect any users. The only requirement is
to now use the get function when attempting to retrieve an object whose name is put
together via paste0

Can define names for individual model components
Functions affected: all existing functions for models, i.e. apollo_mnl etc
Detailed description: the user can now include an optional additional argument
componentName in the settings for individual models. This is then used in the reporting of
outputs as well as in any error messages
Backwards compatibility of code: no backwards compatibility issues

Tests for zero probabilities at starting values for individual model components
Functions affected: all existing functions for models, i.e. apollo_mnl etc
Detailed description: unless apollo_control$noValidation==TRUE, Apollo now checks the
likelihood of individual model components in addition to the overall model and prints a
warning if probabilities are zero for some individuals while estimation is not started if
probabilities are zero for all. This is relevant for latent class models, where it is permissable

156

to have zero probabilities for some individuals in some classes, but where initial zero
probabilities for all individuals in a class are likely to highlight problems.
Backwards compatibility of code: no backwards compatibility issues

Ability to sort results by date
Functions affected: apollo_combineResults
Detailed description: an additional option sortByDate has been included. When set to
TRUE, the models in the summary file will be sorted by the date when the model was
estimated (default set to TRUE)
Backwards compatibility of code: no backwards compatibility issues

Improved memory usage with multi-core estimation
Functions affected: apollo_estimate
Detailed description: Memory requirements for multi-core estimation have been reduced
substantially compared to previous versions
Backwards compatibility of code: no backwards compatibility issues

Constraints in HB estimation can now use names of parameters
Functions affected: apollo_estimate with apollo_control$HB==TRUE
Detailed description: the user can now use names of parameters when creating constraints
for HB estimation rather than relying on the numeric coding from RSGHB
Backwards compatibility of code: no backwards compatibility issues for existing functions
as old format for input still permitted

Smallest absolute eigenvalue of Hessian reported
Functions affected: apollo_estimate, apollo_modelOutput, apollo_saveOutput
Detailed description: Apollo reports the eigenvalue of the Hessian that is closest to zero.
Small values can indicate convergence issues. A special warning message is displayed if
some of the eigenvalues are positive.
Backwards compatibility of code: no backwards compatibility issues

Check whether class allocation probabilities for latent class sum to 1
Functions affected: apollo_lc
Detailed description: New check to ensure that class alloaction probabilities for latent class
sum to 1
Backwards compatibility of code: no backwards compatibility issues

Calculation of LL (0)
Functions affected: apollo_modelOutput and apollo_saveOutput
Detailed description: The calculation of the log-likelihood at zero has been improved for
some models, as has the reporting of it. Where this measure does not apply, Apollo now
reports “Not applicable” instead of “NA”

157

Backwards compatibility of code: no backwards compatibility issues

Ordered probit added
Functions affected: apollo_op
Detailed description: the user can now use ordered probit models via the function
apollo_op
Backwards compatibility of code: no backwards compatibility issues

Out of sample testing can add to existing runs
Functions affected: apollo_outOfSample
Detailed description: apollo_outOfSample checks whether output files already exists and
adds to those if the number of runs requested is larger than what is already stored in these
files
Backwards compatibility of code: no backwards compatibility issues

Prevent use of some functions for HB models
Functions affected: apollo_panelProd, apollo_avgInterdraws, apollo_avgIntraDraws,
apollo_deltaMethod, apollo_conditionals, apollo_unconditionals,
apollo_lcConditionals, apollo_lcUnconditionals
Detailed description: Many of the Apollo functions are for classical estimation only, and
their use previously led to failures. Their use is now prevented when
apollo_control$HB==TRUE.
Backwards compatibility of code: the call to these functions was previously ignored and will
now lead to a failure in any files they are still included in. The appropriate lines need
commenting out.

Inputs changed for apollo_prediction and added ability to calculate standard
errors
Functions affected: apollo_prediction
Detailed description: the apollo_prediction function now takes prediction_settings as
an input, where this is the new location for including modelComponent. In addition, an
optional setting called runs has been included that computes standard errors across
multiple prediction runs based on different draws from the estimates and covariance matrix
for the model parameters
Backwards compatibility of code: no backwards compatibility issues for existing functions
as old format for input still permitted

Output files no longer overwritten
Functions affected: apollo_saveOutputs
Detailed description: the apollo_saveOutput function now checks whether output files for
the model already exists and changes their names (by including OLD in the name) rather
than overwritting them

158

Backwards compatibility of code: no backwards compatibility issues

Output file for starting value search simplified
Functions affected: apollo_searchStart
Detailed description: The output file for apollo_searchStart was simplified from v0.0.9 to
v0.1.0. Now it only records starting candidate values, and their loglikelihoods throughout
the stages, but not their values at each stage, as it used to.
Backwards compatibility of code: no backwards compatibility issues

Subsetting of data when some variables are factors
Functions affected: all functions making use of the database
Detailed description: If a dataset contains factors, the use of subsetting of the data in R
would still retain levels that no longer apply. This is a feature of R which can have
unintended consequences and we thus eliminate any missing levels.
Backwards compatibility of code: no backwards compatibility issues

Changes to Apollo examples:

Examples affected: apollo_example_3
Detailed description: include calculation of standard errors for forecasts
Backwards compatibility of examples: affected part only works from version 0.1.0 onwards

Examples affected: apollo_example_3 and apollo_example_26
Detailed description: use cost increase by 1% instead of 10% for calculating elasticities
Backwards compatibility of examples: no backwards compatibility issues

Examples affected: apollo_example_5
Detailed description: apollo_example_5 no longer reads in the results from
apollo_example_4 as starting values as this woudl have implied an inconsistent initial
nesting structure
Backwards compatibility of examples: no backwards compatibility issues

Examples affected: apollo_example_18, apollo_example_19, apollo_example_20,
apollo_example_22, apollo_example_27 and apollo_example_28
Detailed description: componentName added to class specific models
Backwards compatibility of examples: setting ignored in earlier versions

Examples affected: apollo_example_22
Detailed description: in the use of apollo_prediction, modelComponent is now included in
prediction_settings rather than as a direct input
Backwards compatibility of examples: affected part only works from version 0.1.0 onwards

159

Examples affected: apollo_example_28
Detailed description: included apollo_probabilities as an argument for
apollo_unconditionals
Backwards compatibility of examples: this is a bug fix that ensures the example now runs
correctly

Bug fixes:

apollo_bootstrap
Adding additional bootstrap runs with the same seed now ensures that new draws are used
rather than adding the same results that already exist.

apollo_combineResults
When combineResults_settings$modelNames was not provided, other settings were
ignored

apollo_estimate
Earlier versions still performed model validation even if
apollo_control$noValidation==TRUE

apollo_lc
The pre-estimation diagnostic tests would fail in case the starting values were the same for
multiple classes in a latent class model

apollo_lcConditionals
Conditionals from latent class used to report one row per observation, while they should
have reported one row per individual

apollo_mdcev
When the rows option was used, any pre-estimation checks still included all rows in the
data. In addition, some failures could occur in estimation.

apollo_prediction
Predictions from latent class were missing the names of the alternatives in the output

apollo_searchStart
Multiple bugs have been corrected. In previous versions, the function would ignore
converged candidates and would pick the wrong candidate as “best”

160

Version 0.1.1 (15 September 2020)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Additional checks on draws
Functions affected: all functions with mixing
Detailed description: Apollo now ensures that intra-individual draws are only used in the
presence of multiple observations per individual.
Backwards compatibility of code: no backwards compatibility issues

Additional checks for exploded logit
Functions affected: apollo_el
Detailed description: The apollo_el now ensures that no alternative is chosen more than
once across stages and ensures that any obsolete stages have the choice variable coded as
−1.
Backwards compatibility of code: no backwards compatibility issues

Parameter specific constraints in HB estimation can now use names of
parameters
Functions affected: apollo_estimate with apollo_control$HB==TRUE
Detailed description: the user can now use names of parameters when creating constraints
for individual parameters in HB estimation rather than relying on the numeric coding from
RSGHB
Backwards compatibility of code: no backwards compatibility issues for existing functions
as old format for input still permitted

Additional flexibility for thresholds in ordered logit and ordered probit
Functions affected: apollo_ol and apollo_op
Detailed description: The thresholds for ordered logit and ordered logit are now given as a
list, with one entry per threshold, thus allowing the user to have thresholds varying across
observations/individuals, with possible additional random heterogeneity.
Backwards compatibility of code: no backwards compatibility issues as the function can still
be called with the thresholds as a simple vector

Check for use of reserved names
Functions affected: apollo_validateInputs
Detailed description: For internal consistency, some core names, such as alternatives,
avail and sigma are now protected and cannot be used in the data, apollo_beta,
apollo_lcPars and apollo_randCoeff.

161

Backwards compatibility of code: backwards compatibility for some model files, but can be
easily addressed by changing names

Changes to Apollo examples:

Examples affected: apollo_example_24.r
Detailed description: Uses new specification of thresholds as a list for apollo_ol
Backwards compatibility of examples: old format still accepted

Examples affected: apollo_example_11.r, apollo_example_12.r and apollo_example_17.r
Detailed description: sigma replaced by sig to avoid protected names issue
Backwards compatibility of examples: change required for v 0.1.1 onwards

Bug fixes:

apollo_conditionals with apollo_control$workInLogs==TRUE
Fixed a bug where Apollo allowed the use of apollo_conditionals despite having
apollo_control$workInLogs==TRUE. This led to a failure as the probabilities are not
available at the draw level when working in logs. This functionality is consequently not
available now.

apollo_estimate with HB and constraints
Fixed a bug that led to a failure if a constraint was imposed on the final element of
apollo_beta.

apollo_estimate with weights
Fixed a bug where in older versions, the log-likelihood at zero (LL0) was calculated without
the weights.

apollo_estimate with apollo_control$workInLogs==TRUE
Fixed a bug that led to a failure if the probabilities were zero with some draws. Also fixed a
bug when using latent class models with apollo_control$workInLogs==TRUE which led to
a bias in the calculation of probabilities.

apollo_ol and apollo_op
Fixed a bug that led to a failure when using a response variable with fewer or more than 5
levels

apollo_sharesTest
Fixed a bug that led to a failure when using apollo_sharesTest with
sharesTest_settings$subsamples==NA and when using rows inside the model

162

apollo_inputs$apollo_control
Fixed a bug to ensure that when apollo_control is used by a function, it is fetched from
apollo_inputs$apollo_control, making sure that when debugging, the correct (i.e.
processed) apollo_control is used.

apollo_mdcev
Fixed a bug that led to an erroneous error message and halt to estimation with MDCEV
models when using the mdcev_settings$minConsumption setting.

LL(0) with some models using random coefficients
Fixed a bug that led to incorrect LL(0) for some models using random coefficients, notably
for latent class models with continuous random coefficients in the class allocation model.

163

Version 0.2.0 (19 October 2020)

Changes to Apollo code:

General
Major improvements to efficiency, stability and reporting of user errors.

Ben-Akiva & Swait test added
Functions affected: apollo_basTest
Detailed description: the user can now perform the Ben-Akiva & Swait test
Backwards compatibility of code: new function from version 0.2.0 onwards

New outputs for bootstrap, and changes to storage of repetitions
Functions affected: apollo_bootstrap
Detailed description: apollo_bootstrap now returns a list which contains two components,
namely a list of estimated parameters and likelihood function in each repetition, and the
covariance matrix. In addition, when called an additional time, the function will always add
new repetitions to old files, if they exist (it won’t “complete" the requested number).
Backwards compatibility of code: format of output has changed for post-processingno
backwards compatibility issues

apollo_inputs is no longer automatically updated when calling post-processing
functions
Functions affected: apollo_conditionals, apollo_lcConditionals,
apollo_lcUnconditionals, apollo_llCalc, apollo_prediction, apollo_unconditionals
Detailed description: In previous versions, apollo_inputs would be updated when calling
post-processing functions. Now Apollo instead checks if any inputs have changed and alerts
the user to revalidate apollo_inputs.
Backwards compatibility of code: examples where changes to the data were made post
estimation require a call to apollo_validateInputs

Model description added to output of apollo_combineResults
Functions affected: apollo_combineResults
Detailed description: The csv file produced by apollo_combineResults now includes the
model description defined in apollo_control by the user
Backwards compatibility of code: Ouput changed, but no backwards compatibility issues

Estimation time split into separate components in output
Functions affected: apollo_modelOuptut, whether using apollo_estimate or
apollo_estimateHB
Detailed description: The time taken by apollo_modelOuptut and apollo_estimate is now
split into pre-processing, estimation, and post-processing time

164

Backwards compatibility of code: Ouput changed, but no backwards compatibility issues

apollo_fitsTest uses log-likelihood instead of probabilities
Functions affected: apollo_fitsTest
Detailed description: In previous versions of Apollo, the function apollo_fitsTest used the
probability of correct prediction, which was not appropriate for non-discrete choice models
and also not for multi-component models. The function now uses the log-likelihood instead.
The function also only does this for the overall model, i.e. no longer allowing the user to
look separately at subcomponents of a joint model.
Backwards compatibility of code: Ouput changed.

ID included in outputs of apollo_lcConditionals
Functions affected: apollo_lcConditionals
Detailed description: The individual-specific value for apollo_control$indivID is now
included as the first column of the output of apollo_lcConditionals
Backwards compatibility of code: Ouput changed.

New function for EM algorithm for latent class models
Functions affected: apollo_lcEM
Detailed description: Function for automatically using the EM algorithm for latent class
models rather than requiring the user to code this for a specific model
Backwards compatibility of code: New function. Users interested in how to code this
manually are referred to earlier manuals.

New function for EM algorithm for mixed logit
Functions affected: apollo_mixEM
Detailed description: Function for automatically using the EM algorithm for mixed logit
models with a full covariance matrix and all parameters being random
Backwards compatibility of code: New function. Users interested in how to code this
manually are referred to earlier manuals.

New input options for likelihood ratio test, and enhanced output
Functions affected: apollo_lrTest
Detailed description: Apollo now allows the user to apply a likelihood ratio test using
outputs from two models that are stored in memory (rather than one model needing to
have been saved to disk). The restricted model also no longer needs to be given first, as
Apollo will determine the order of the two models. The apollo_llTest function now also
prints the likelihoods of each model as well as their difference.
Backwards compatibility of code: No backwards compatibility issues.

User can specify number of replications to use in MDCEV forecasting
Functions affected: apollo_mdcev and apollo_mdcev

165

Detailed description: The user can specify the number of replications using the optional
argument nRep
Backwards compatibility of code: No backwards compatibility issues.

New optional settings for model output
Functions affected: apollo_modelOutput and apollo_saveOutput
Detailed description: The setting printPVal can now take three values: 0 (no p-vals), 1
(one-sided), or 2 (two-sided). The setting printDiagnostics was split in two settings:
printDataReport (logical) to print the summary of the dependant variable, and
printModelStructure (logical) to print data on nesting structures. A new setting
printFunctions is included to print a copy of apollo_probabilities, apollo_control,
scaling (for estimation and Hessian), Hessian routines attempted, apollo_lcPars and
apollo_randCoeff.
Backwards compatibility of code: No backwards compatibility issues as old input still
accepted and new inputs are optional.

Changes to storage of repetitions for out of sample prediction
Functions affected: apollo_outOfSample
Detailed description: When called an additional time apollo_outOfSample will always add
new repetitions to old files, if they exist (it won’t “complete" the requested number).
Backwards compatibility of code: format of output has changed for post-processingno
backwards compatibility issues

Improved output for predictions
Functions affected: apollo_prediction
Detailed description: A summary of the predictions are printed in a nice way, with special
handling of MDCEV models. Automatic creation of confidence intervals when using
repeated sampling.
Backwards compatibility of code: Output changed

Data no longer gets sorted by ID
Functions affected: apollo_validateData
Detailed description: Apollo no longer sorts the data by apollo_control$ID. Sorting is not
required by the user either, but all observations from same individual need to be contiguous
in the data.
Backwards compatibility of code: Apollo will now ask the user to group together data for
the same individual. Some older models may thus require adjustment to the data.

Allow working in logs for cross-sectional data
Functions affected: apollo_validateInputs
Detailed description: Previous versions of Apollo allowed the use of
apollo_control$workInLogs only with panel data.

166

Backwards compatibility of code: No backwards compatibility issues.

Changes to reserved names
Functions affected: apollo_validateInputs
Detailed description: The restrictions imposed in version 0.1.1 for reserved names have
been relaxed, and replaced by a check that no names from apollo_beta,
apollo_randCoeff, database, apollo_draws or apollo_lcPars are redefined elsewhere.
Backwards compatibility of code: Possible changes needed to old model files.

Ability to use a subset of model components in apollo_combineModels
Functions affected: apollo_combineModels
Detailed description: The user can now specify a subset of model components to multiply.
Backwards compatibility of code: New optional argument.

Changes to Apollo examples:

Examples affected: apollo_example_2.r
Detailed description: Uses bootstrap standard errors.
Backwards compatibility of examples: This functionality was not supported in previous
versions.

Examples affected: apollo_example_3.r and apollo_example_22.r
Detailed description: Function apollo_validateInputs is called before every
apollo_prediction to update database inside apollo_inputs.
Backwards compatibility of examples: If apollo_validateInputs is not called before
prediction (as in previous versions), then the prediction will not change, even if the version
of database in the Global Environment changes.

Examples affected: apollo_example_6.r
Detailed description: Added Ben-Akiva and Swait test, i.e. a call to function
apollo_basTest.
Backwards compatibility of examples: apollo_basTest was not implemented in previous
version, so it will fail.

Examples affected: apollo_example_11.r and apollo_example_12.r
Detailed description: Name of scale parameter is now sigma.
Backwards compatibility of examples: Previous versions did not allow user defined variables
to be called sigma, so the example will fail in previous versions.

Examples affected: apollo_example_11.r
Detailed description: Removed line colMeans(predictions_base). This is no longer
necessary as apollo_prediction now prints an aggregate summary of the predicted values.

167

Backwards compatibility of examples: The aggregate summary of the prediction will not be
shown in previous versions.

Examples affected: apollo_example_14.r
Detailed description: This example now uses 4-core multithreading for estimation.
Backwards compatibility of examples: No issues.

Examples affected: apollo_example_18.r, apollo_example_20.r, apollo_example_27.r
and apollo_example_28.r
Detailed description: When looping over latent classes inside apollo_probabilities, the
total number of classes is not hard-coded any more. Instead, the number of classes is
obtained as the length of pi_values (part of the return of apollo_lcPars())
Backwards compatibility of examples: No issues.

Examples affected: apollo_example_20.r
Detailed description: Dropping first column of conditionals as this now includes the ID.
Backwards compatibility of examples: Change needed from v.0.2.0. onwards.

Examples affected: apollo_example_27.r and apollo_example_28.r
Detailed description: EM estimation is now achieved using apollo_lcEM.
Backwards compatibility of examples: This example will not run in Apollo v0.1.1 or earlier,
as function apollo_lcEM does not exist in those versions.

Examples affected: apollo_example_29.r
Detailed description: EM estimation is now achieved using apollo_mixEM.
Backwards compatibility of examples: This example will not run in Apollo v0.1.1 or earlier,
as function apollo_mixEM does not exist in those versions.

Bug fixes:

apollo_choiceAnalysis
Fixed a bug where apollo_choiceAnalysis failed when an entry in
choiceAnalysis_settings$explanators was empty

Seed for apollo_makeDraws
Fixed a bug where this function was looking for apollo_control$seed_draws instead of
apollo_control$seed

168

Version 0.2.1 (28 October 2020)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Changes to Apollo examples:

None

Bug fixes:

apollo_lcEM
Fixed bugs where apollo_lcEM could not be used with multiple cores, or when not
additionally computing the covariance matrix

Version 0.2.2 (5 December 2020)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

New options for shares test added added
Functions affected: apollo_sharesTest
Detailed description: the user can now create pseudo-alternatives, grouping together
existing alternatives
Backwards compatibility of code: new optional argument, no backwards compatibility issues

User can omit avail when all alternatives are available
Functions affected: apollo_mnl, apollo_nl, apollo_cnl, apollo_dft, apollo_el,
apollo_mdcev, apollo_mdcnev
Detailed description: the user can now omit the avail argument if all alternatives are
available
Backwards compatibility of code: optional, no backwards compatibility issues

Improved counting of modelled outcomes
Functions affected: apollo_modelOutput and apollo_saveOutput
Detailed description: the output now counts modelled outcomes as opposed to rows in the
data, which leads to different statistics for multi-component models

169

Backwards compatibility of code: outputs changed, with resulting changes in goodness-of-fit
statistics

Optionally drop fixed parameters from output
Functions affected: apollo_modelOutput and apollo_saveOutput
Detailed description: the user can now optionally exclude fixed parameters from the output
Backwards compatibility of code: outputs changed

Optionally return only the model component when using apollo_combineModels
Functions affected: apollo_combineModels
Detailed description: the user can now optionally exclude subcomponents when calling
apollo_combineModels
Backwards compatibility of code: new optional argument, no backwards compatibility issues

Individual IDs and observation numbers included in output of apollo_bootstrap
Functions affected: apollo_bootstrap
Detailed description: apollo_bootstrap now writes the indivID and apollo_seq to its file
output .
Backwards compatibility of code: Changes to output.

Ability to include constraints in classical estimation
Functions affected: apollo_estimate
Detailed description: apollo_estimate now has an additional optional argument for
constraints.
Backwards compatibility of code: New capability.

Changes to Apollo examples:

None

Bug fixes:

apollo_lcEM
Fixed a bug where apollo_lcEM was still running when generic parameters were included,
and a separate bug with the calculation of the log-likelihood with multiple cores

apollo_estimate with bootstrap
Fixed a bug where apollo_estimate could not run post-estimation bootstrapping when
using multiple cores

apollo_basTest
Fixed a bug to prevent apollo_basTest from running when the better fitting model has

170

fewer parameters

Version 0.2.3 (20 January 2021)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Changes to Apollo examples:

None

Bug fixes:

apollo_estimate
Fixed a bug where apollo_estimate could fail due to missing arguments, where this is now
checked before estimation starts

Version 0.2.4 (25 February 2021)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

Monte Carlo replications for MDCEV can now be set by user
Functions affected: apollo_prediction with apollo_mdcev, apollo_mdcnev
Detailed description: the user can now set the number of Monte Carlo replications to use
when predicting from MDCEV models
Backwards compatibility of code: new optional argument, no backwards compatibility issues

MDCEV predictions now include expenditure
Functions affected: apollo_prediction with apollo_mdcev, apollo_mdcnev
Detailed description: the output from apollo_prediction for MDCEV models now
includes the expenditure
Backwards compatibility of code: new output, no backwards compatibility issues

Predictions now returned as data.frame instead of matrix
Functions affected: apollo_prediction

171

Detailed description: the output from apollo_prediction is now a data.frame instead of a
matrix, which helps avoid issues with non-numeric IDs
Backwards compatibility of code: new output format, some possible backwards
compatibility issues with examples

apollo_sharesTest now returns output
Functions affected: apollo_sharesTest
Detailed description: the output from apollo_prediction is now not just printed to screen,
but also returned
Backwards compatibility of code: new output format, no backwards compatibility issues

Changes to Apollo examples:

None

Bug fixes:

apollo_dft
Fixed a bug where apollo_dft could fail in mixture models

apollo_prediction with apollo_mdcev, apollo_mdcnev
Fixed a bug where apollo_predictions could produce errors when asking for confidence
intervals with MDCEV models

apollo_cnl
Fixed a bug where apollo_cnl would not check for allocation parameters to sum to 1

Version 0.2.5 (31 July 2021)

Changes to Apollo code:

General
Minor improvements to efficiency, stability and reporting of user errors.

User can specify number of replications to use in predictions from MDCEV
Functions affected: apollo_prediction with apollo_mdcev and apollo_mdcnev
Detailed description: The Pinjari & Bhat forecasting algorithm uses replications, and the
user can now provide this as an additional settings named rep in prediction_settings.
Backwards compatibility of code: new capability, no backwards compatibility issues

More detailed outputs for MDCEV predictions

172

Functions affected: apollo_prediction with apollo_mdcev and apollo_mdcnev
Detailed description: The prediction from MDCEV models now returns the mean and
standard deviations of continuous demand (cont_mean, cont_sd), discrete demand
(disc_mean, disc_sd), and expenditure (expe_mean, exp_sd).
Backwards compatibility of code: new output format, no backwards compatibility issues

Predictions with multiple component components
Functions affected: apollo_prediction with apollo_combineModels
Detailed description: apollo_prediction with multiple model components now returns a
list of data.frame, one for each model component. Model components without prediction
capabilities are omitted from the return. If runs>1, then a data.frame with the point
estimates are given AND a 3-dim array with the repetitions as well (the array does not have
the IDs)
Backwards compatibility of code: new output format, some ancillary code may need to be
updated

Output directory can be set by the user
Functions affected: all functions reading and writing to files
Detailed description: the user can specify an optional argument outputDirectory in
apollo_control which will be used for outputs.
Backwards compatibility of code: new capability, no backwards compatibility issues

Output returned by apollo_sharesTest
Functions affected: apollo_sharesTest
Detailed description: In addition to screen output, apollo_sharesTest also invisibly
returns the output so it can be saved into a data.frame
Backwards compatibility of code: new capability, no backwards compatibility issues

Changes to Apollo examples:

All examples changed to use output directory.

Bug fixes:

apollo_ol and apollo_op
Fixed a bug that led to failures when users provided their own coding of levels

apollo_cnl
Fixed a bug that failed to correctly diagnose when allocation parameters did not sum to 1
at the starting values

173

Appendix B

Data dictionaries

Tables B.1 to B.4 present data dictionaries for the four datasets made available with Apollo.

174

Table B.1: Data dictionary for apollo_modeChoiceData.csv

Individuals 500
Observations 8,000

Variable Description Values
ID Unique individual ID 1 to 500
RP RP data identifier 1 for RP, 0 for SP
SP SP data identifier 1 for SP, 0 for RP

RP_journey Index for RP observations 1 to 2, NA for SP
SP_task Index for SP observations 1 to 14, NA for RP
av_car availability for alternative 1 (car) 1 for available, 0 for unavailable
av_bus availability for alternative 2 (bus) 1 for available, 0 for unavailable
av_air availability for alternative 3 (air) 1 for available, 0 for unavailable
av_rail availability for alternative 4 (rail) 1 for available, 0 for unavailable

time_car travel time (mins) for alternative 1 (car) Min: 250, mean: 311.79, max: 390 (0 if not available)
cost_car travel cost (£) for alternative 1 (car) Min: 30, mean: 39.99, max: 50 (0 if not available)
time_bus travel time (mins) for alternative 2 (bus) Min: 300, mean: 370.29, max: 420 (0 if not available)
cost_bus travel cost (£) for alternative 2 (bus) Min: 15, mean: 25.02, max: 35 (0 if not available)

access_bus access time (mins) for alternative 2 (bus) Min: 5, mean: 15.02, max: 25 (0 if not available)
time_air travel time (mins) for alternative 3 (air) Min: 50, mean: 70.07, max: 90 (0 if not available)
cost_air travel cost (£) for alternative 3 (air) Min: 50, mean: 79.94, max: 110 (0 if not available)

access_air access time (mins) for alternative 3 (air) Min: 35, mean: 45.02, max: 55 (0 if not available)
service_air service quality for alternative 3 (air) 1 for no-frills, 2 for wifi, 3 for food (0 if not used, RP

data)
time_rail travel time (mins) for alternative 4 (rail) Min: 120, mean: 142.93, max: 170 (0 if not available)
cost_rail travel cost (£) for alternative 4 (rail) Min: 35, mean: 55.03, max: 75 (0 if not available)

access_rail access time (mins) for alternative 4 (rail) Min: 5, mean: 14.96, max: 25 (0 if not available)
service_rail service quality for alternative 4 (rail) 1 for no-frills, 2 for wifi, 3 for food (0 if not used, RP

data)
female dummy variable for female individuals 1 for female, 0 otherwise

business dummy variable for business trips 1 for business trips, 0 otherwise
income income variable (£ per annum) Min: 15,490, mean: 44,748.27, max: 74,891
choice choice variable 1 for car, 2 for bus, 3 for air, 4 for rail

175

Table B.2: Data dictionary for apollo_swissRouteChoiceData.csv

Individuals 388
Observations 3,492

Variable Description Values
ID Unique individual ID 2,439 to 84,525

choice choice variable 1 for alternative 1, 2 for alternative 2
tt1 travel time (mins) for alternative 1 Min: 2, mean: 52.59, max: 389
tc1 travel cost (CHF) for alternative 1 Min: 1, mean: 19.67, max: 206
hw1 headway (mins) for alternative 1 Min: 15, mean: 32.48, max: 60
ch1 interchanges for alternative 1 Min: 0, mean: 0.94, max: 2
tt2 travel time (mins) for alternative 2 Min: 2, mean: 52.47, max: 385
tc2 travel cost (CHF) for alternative 2 Min: 1, mean: 19.69, max: 268
hw2 headway (mins) for alternative 2 Min: 15, mean: 32.38, max: 60
ch2 interchanges for alternative 2 Min: 0, mean: 0.95, max: 2

hh_inc_abs household income (CHF per annum) Min: 10,000, mean: 76,507.73, max: 167,500
car_availability car availability 1 for yes, 0 otherwise

commute dummy variable for commute trips 1 for commute trips, 0 otherwise
shopping dummy variable for shopping trips 1 for shopping trips, 0 otherwise
business dummy variable for business trips 1 for business trips, 0 otherwise
leisure dummy variable for leisure trips 1 for leisure trips, 0 otherwise

176

Table B.3: Data dictionary for apollo_drugChoiceData.csv

Individuals 1,000
Observations 10,000

Variable Description Values
ID Unique respondent ID 1 to 1,000

task Index for SP choice tasks 1 to 10
best first ranked alternative 1 to 4

second_pref second ranked alternative 1 to 4
third_pref third ranked alternative 1 to 4

worst worst ranked alternative 1 to 4
brand_1 brand for first alternative Artemis; Novum

country_1 country for first alternative Switzerland; Denmark; USA
char_1 characteristics for first alternative standard; fast acting; double strength

side_effects_1 rate of side effects for first alternative
(out of 100,000)

Min: 1, mean: 37, max: 100

price_1 price (£) for first alternative Min: 2.25, mean: 3.15, max: 4.5
brand_2 brand for second alternative Artemis; Novum

country_2 country for second alternative Switzerland; Denmark; USA
char_2 characteristics for second alternative standard; fast acting; double strength

side_effects_2 rate of side effects for second alternat-
ive (out of 100,000)

Min: 1, mean: 37, max: 100

price_2 price (£) for second alternative Min: 2.25, mean: 3.15, max: 4.5
brand_3 brand for third alternative BestValue; Supermarket; PainAway

country_3 country for third alternative USA; India; Russia; Brazil
char_3 characteristics for third alternative standard; fast acting

side_effects_3 rate of side effects for third alternative
(out of 100,000)

Min: 10, mean: 370, max: 1,000

price_3 price (£) for third alternative Min: 0.75, mean: 1.75, max: 2.5
brand_4 brand for fourth alternative BestValue; Supermarket; PainAway

country_4 country for fourth alternative USA; India; Russia; Brazil
char_4 characteristics for fourth alternative standard; fast acting

side_effects_4 rate of side effects for fourth alternative
(out of 100,000)

Min: 10, mean: 370, max: 1,000

price_4 price (£) for fourth alternative Min: 0.75, mean: 1.75, max: 2.5
regular_user dummy variable for regular users 1 for regular users, 0 otherwise

university_educated dummy variable for university edu-
cated

1 for university educated, 0 otherwise

over_50 dummy variable for age over 50 years 1 for age over 50 years, 0 otherwise
attitude_quality Answer to “I am concerned about the

quality of drugs developed by unknown
companies"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_ingredients Answer to “I believe that ingredients are
the same no matter what the brand"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_patent Answer to “The original patent holders
have valuable experience with their me-
decines"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_dominance Answer to “I believe the dominance of
big pharmaceutical companies is un-
helpful"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

177

Table B.4: Data dictionary for apollo_timeUseData.csv

Individuals 447
Observations 2,826

Variable Description Values
indivID Unique respondent ID 19209 to 9959342

day Index of the day for the individual (day
1 excluded from data)

2 to 14

date Date in format yyyymmdd 20161014 to 20170308
budget Total amount of time registered during

the day (in minutes)
1440 to 1440

t_a01 time spent dropping-off or picking up
other people (in minutes)

0 to 1153

t_a02 time spent working (in minutes) 0 to 1425
t_a03 time spent on educational activities (in

minutes)
0 to 1050

t_a04 time spent shopping (in minutes) 0 to 1434
t_a05 time spent on private business (in

minutes)
0 to 1077

t_a06 time spent getting petrol (in minutes) 0 to 896
t_a07 time spent on social or leasure activities

(in minutes)
0 to 1425

t_a08 time spent on vacation or on long (in-
tercity) travel (in minutes)

0 to 828

t_a09 time spent doing exercise (in minutes) 0 to 1416
t_a10 time spent at home (in minutes) 0 to 1440
t_a11 time spent travelling (everyday travel-

ling) (in minutes)
0 to 1182

t_a12 Non-allocated time (in minutes) 0 to 1160
female dummy variable for female individuals 1 for female, 0 otherwise

age age of the respondent (in years, approx-
imate)

21 to 80

occ_full_time dummy for respondents working full
time

1 for respondents working full time, 0
otherwise

weekend dummy for weekend days 1 for weekend, 0 otherwise

178

Appendix C

Index of example files

Table C.1 presents an overview of the example files made available with Apollo, while Table C.2
shows which function is used with what example.

179

T
ab

le
C
.1
:
In
de

x
of

ex
am

pl
e
fil
es

F
il
e

D
es
cr
ip
ti
on

D
at
a
fi
le

A
po

llo
_
ex
am

pl
e_

1.
r

Si
m
pl
e
M
N
L
m
od

el
on

m
od

e
ch
oi
ce

R
P

da
ta

ap
ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

2.
r

Si
m
pl
e
M
N
L
m
od

el
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

3.
r

M
N
L
m
od

el
w
it
h
so
ci
o-
de

m
og
ra
ph

ic
s
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

4.
r

T
w
o-
le
ve
lN

L
m
od

el
w
it
h
so
ci
o-
de

m
og
ra
ph

ic
s
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

5.
r

T
hr
ee
-le

ve
lN

L
m
od

el
w
it
h
so
ci
o-
de

m
og
ra
ph

ic
s
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

6.
r

C
N
L
m
od

el
w
it
h
so
ci
o-
de

m
og
ra
ph

ic
s
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

7.
r

Si
m
pl
e
R
R
M

m
od

el
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

8.
r

D
F
T

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

9.
r

D
F
T

m
od

el
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

10
.r

E
xp

lo
de

d
lo
gi
t
m
od

el
on

dr
ug

ch
oi
ce

da
ta

ap
ol
lo
_
dr
ug

C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

11
.r

M
D
C
E
V

m
od

el
on

ti
m
e
us
e
da

ta
w
it
ho

ut
ou

ts
id
e
go

od
an

d
co
ns
ta
nt
s

on
ly

in
ut
ili
ti
es

ap
ol
lo
_
ti
m
eU

se
D
at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

12
.r

M
D
C
E
V

m
od

el
on

ti
m
e
us
e
da

ta
w
it
h
ou

ts
id
e
go

od
an

d
w
it
h
co
va
ri
at
es

in
ut
ili
ti
es

ap
ol
lo
_
ti
m
eU

se
D
at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

13
.r

M
D
C
N
E
V

m
od

el
on

ti
m
e
us
e
da

ta
w
it
h
ou

ts
id
e
go

od
an

d
w
it
h
co
va
ri
-

at
es

in
ut
ili
ti
es

ap
ol
lo
_
ti
m
eU

se
D
at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

14
.r

M
ix
ed

lo
gi
t
m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,u

nc
or
re
la
te
d
L
og
no

rm
al
s

in
ut
ili
ty

sp
ac
e

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

15
.r

M
ix
ed

lo
gi
t
m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,
co
rr
el
at
ed

L
og
no

rm
al
s

in
ut
ili
ty

sp
ac
e

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

16
.r

M
ix
ed

lo
gi
t
m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,W

T
P
sp
ac
e
w
it
h
co
rr
el
-

at
ed

an
d
fle

xi
bl
e
di
st
ri
bu

ti
on

s,
in
te
r
an

d
in
tr
a-
in
di
vi
du

al
he

te
ro
ge
ne

it
y

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

17
.r

M
ix
ed

M
D
C
E
V

m
od

el
on

ti
m
e
us
e
da

ta
,a

lp
ha

-g
am

m
a
pr
ofi

le
,n

o
ou

t-
si
de

go
od

an
d
ra
nd

om
co
ns
ta
nt
s
on

ly
in

ut
ili
ti
es

ap
ol
lo
_
ti
m
eU

se
D
at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

18
.r

Si
m
pl
e
L
C

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

19
.r

Si
m
pl
e
D
M

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

20
.r

L
C

m
od

el
w
it
h
cl
as
s
al
lo
ca
ti
on

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

21
.r

L
at
en
t
cl
as
s
w
it
h
co
nt
in
uo

us
ra
nd

om
pa

ra
m
et
er
s
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

22
.r

R
P
-S
P

m
od

el
on

m
od

e
ch
oi
ce

da
ta

ap
ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

23
.r

B
es
t-
w
or
st

m
od

el
on

dr
ug

ch
oi
ce

da
ta

ap
ol
lo
_
dr
ug

C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

24
.r

IC
LV

m
od

el
on

dr
ug

ch
oi
ce

da
ta
,u

si
ng

or
de

re
d
m
ea
su
re
m
en
t
m
od

el
fo
r

in
di
ca
to
rs

ap
ol
lo
_
dr
ug

C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

25
.r

IC
LV

m
od

el
on

dr
ug

ch
oi
ce

da
ta
,u

si
ng

co
nt
in
uo

us
m
ea
su
re
m
en
t
m
od

el
fo
r
in
di
ca
to
rs

ap
ol
lo
_
dr
ug

C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

26
.r

H
B

m
od

el
on

m
od

e
ch
oi
ce

SP
da

ta
ap

ol
lo
_
m
od

eC
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

27
.r

Si
m
pl
e
L
C

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,E

M
al
go
ri
th
m

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

28
.r

L
C

m
od

el
w
it
h
cl
as
s
al
lo
ca
ti
on

m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,
E
M

al
go
ri
th
m

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

29
.r

M
ix
ed

lo
gi
t
m
od

el
on

Sw
is
s
ro
ut
e
ch
oi
ce

da
ta
,
co
rr
el
at
ed

L
og
no

rm
al
s

in
ut
ili
ty

sp
ac
e,

E
M

al
go
ri
th
m

ap
ol
lo
_
sw

is
sR

ou
te
C
ho

ic
eD

at
a.
cs
v

A
po

llo
_
ex
am

pl
e_

30
.r

E
ffi
ci
en
t
co
di
ng

of
la
rg
e
ch
oi
ce

se
ts

no
ne

(g
en

er
at
ed

in
m
od

el
sc
ri
pt
)

180

Table C.2: Functions used by Apollo, with inputs and outputs

A
p
ol
lo
_
ex
am

p
le
_
1.
r

A
p
ol
lo
_
ex
am

p
le
_
2.
r

A
p
ol
lo
_
ex
am

p
le
_
3.
r

A
p
ol
lo
_
ex
am

p
le
_
4.
r

A
p
ol
lo
_
ex
am

p
le
_
5.
r

A
p
ol
lo
_
ex
am

p
le
_
6.
r

A
p
ol
lo
_
ex
am

p
le
_
7.
r

A
p
ol
lo
_
ex
am

p
le
_
8.
r

A
p
ol
lo
_
ex
am

p
le
_
9.
r

A
p
ol
lo
_
ex
am

p
le
_
10

.r

A
p
ol
lo
_
ex
am

p
le
_
11

.r

A
p
ol
lo
_
ex
am

p
le
_
12

.r

A
p
ol
lo
_
ex
am

p
le
_
13

.r

A
p
ol
lo
_
ex
am

p
le
_
14

.r

A
p
ol
lo
_
ex
am

p
le
_
15

.r

A
p
ol
lo
_
ex
am

p
le
_
16

.r

A
p
ol
lo
_
ex
am

p
le
_
17

.r

A
p
ol
lo
_
ex
am

p
le
_
18

.r

A
p
ol
lo
_
ex
am

p
le
_
19

.r

A
p
ol
lo
_
ex
am

p
le
_
20

.r

A
p
ol
lo
_
ex
am

p
le
_
21

.r

A
p
ol
lo
_
ex
am

p
le
_
22

.r

A
p
ol
lo
_
ex
am

p
le
_
23

.r

A
p
ol
lo
_
ex
am

p
le
_
24

.r

A
p
ol
lo
_
ex
am

p
le
_
25

.r

A
p
ol
lo
_
ex
am

p
le
_
26

.r

A
p
ol
lo
_
ex
am

p
le
_
27

.r

A
p
ol
lo
_
ex
am

p
le
_
28

.r

A
p
ol
lo
_
ex
am

p
le
_
29

.r

A
p
ol
lo
_
ex
am

p
le
_
30

.r

apollo_attach x
apollo_avgInterDraws x x x x x x x x
apollo_avgIntraDraws x

apollo_basTest x x
apollo_bootstrap x x

apollo_choiceAnalysis x x
apollo_cnl x

apollo_combineModels x x x x
apollo_combineResults x

apollo_conditionals x x x
apollo_deltaMethod x

apollo_detach x
apollo_dft x x
apollo_el x

apollo_estimate x
apollo_firstRow x x x x x x
apollo_fitsTest x
apollo_initialise x

apollo_lc x x x x x x
apollo_lcEM x x

apollo_lcConditionals x
apollo_lcUnconditionals x x

apollo_llCalc x
apollo_loadModel x

apollo_lrTest x x x
apollo_mdcev x x x

apollo_mdcnev x
apollo_mixEM x

181

A
p
ol
lo
_
ex
am

p
le
_
1.
r

A
p
ol
lo
_
ex
am

p
le
_
2.
r

A
p
ol
lo
_
ex
am

p
le
_
3.
r

A
p
ol
lo
_
ex
am

p
le
_
4.
r

A
p
ol
lo
_
ex
am

p
le
_
5.
r

A
p
ol
lo
_
ex
am

p
le
_
6.
r

A
p
ol
lo
_
ex
am

p
le
_
7.
r

A
p
ol
lo
_
ex
am

p
le
_
8.
r

A
p
ol
lo
_
ex
am

p
le
_
9.
r

A
p
ol
lo
_
ex
am

p
le
_
10

.r

A
p
ol
lo
_
ex
am

p
le
_
11

.r

A
p
ol
lo
_
ex
am

p
le
_
12

.r

A
p
ol
lo
_
ex
am

p
le
_
13

.r

A
p
ol
lo
_
ex
am

p
le
_
14

.r

A
p
ol
lo
_
ex
am

p
le
_
15

.r

A
p
ol
lo
_
ex
am

p
le
_
16

.r

A
p
ol
lo
_
ex
am

p
le
_
17

.r

A
p
ol
lo
_
ex
am

p
le
_
18

.r

A
p
ol
lo
_
ex
am

p
le
_
19

.r

A
p
ol
lo
_
ex
am

p
le
_
20

.r

A
p
ol
lo
_
ex
am

p
le
_
21

.r

A
p
ol
lo
_
ex
am

p
le
_
22

.r

A
p
ol
lo
_
ex
am

p
le
_
23

.r

A
p
ol
lo
_
ex
am

p
le
_
24

.r

A
p
ol
lo
_
ex
am

p
le
_
25

.r

A
p
ol
lo
_
ex
am

p
le
_
26

.r

A
p
ol
lo
_
ex
am

p
le
_
27

.r

A
p
ol
lo
_
ex
am

p
le
_
28

.r

A
p
ol
lo
_
ex
am

p
le
_
29

.r

A
p
ol
lo
_
ex
am

p
le
_
30

.r

apollo_mnl x
apollo_modelOutput x

apollo_nl x x
apollo_normalDensity x

apollo_ol x
apollo_op

apollo_outOfSample x x
apollo_panelProd x
apollo_prediction x x x x x x x

apollo_prepareProb x
apollo_readBeta x x x x x

apollo_saveOutput x
apollo_searchStart x x x
apollo_sharesTest x
apollo_speedTest x

apollo_unconditionals x x x x
apollo_validateInputs x

apollo_weighting

182

Appendix D

Overview of functions, lists and
elements

Table D.1 presents an overview of all Apollo functions, together with their inputs and outputs.
Table D.2 and Table D.3 give an overview of all the lists and elements used by Apollo.

183

Table D.1: Functions used by Apollo, with inputs and outputs

Function Arguments Description Output
apollo_addCovariance model, apollo_inputs Given an estimated model object and its

corresponding apollo_inputs list, calculates the
Hessian at the estimated parameter values, and
from it calculates the classical and robust
covariance matrix between the estimated
parameters, as well as their standar errors.

A copy of the model argument,
but with a Hessian and
covariance matrices added to it.

apollo_attach apollo_beta,
apollo_inputs

Attaches parameters and data to allow users to
refer to individual variables by name without
reference to the object they are contained in.

Nothing

apollo_avgInterDraws P, apollo_inputs,
functionality

Averages individual-specific likelihood across
inter-individual draws.

Likelihood averaged over
inter-individual draws (shape
depends on argument
functionality).

apollo_avgIntraDraws P, apollo_inputs,
functionality

Averages observation-specific likelihood across
intra-individual draws.

Likelihood averaged over
intra-individual draws (shape
depends on argument
functionality).

apollo_basTest model1, model2 Calculates the p-value for the Ben-Akiva & Swait
test for non-nested models. Both models need to
have a single discrete choice component, and be
estimated on the same data.

Returns the p-value of the test
invisibly

apollo_bootstrap apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings,
bootstrap_settings

Samples individuals with replacement from the
database, and estimates the model in each sample.

Covariance matrix of the nRep
sets of estimated parameters.
Also written to file.

apollo_choiceAnalysis choiceAnalysis_settings,
apollo_control, database

Compares market shares across subsamples in
dataset, and writes results to a file.

Saves the output to a csv file in
the working directory.

apollo_cnl cnl_settings,
functionality

Calculates probabilities of a cross nested logit
model.

The returned object depends on
the value of argument
functionality.

184

Function Arguments Description Output
apollo_combineModels P, apollo_inputs,

functionality,
[components], [asList]

Combines model components to create probability
for overall model.

Argument P with an extra
element called "model", which
is the product of all the other
elements. Shape depends on
argument functionality.

apollo_combineResults combineResults_settings Writes results from various models to a single CSV
file.

Nothing, but writes a file called
’model_comparison|_[date].csv’
in the working directory.

apollo_compareInputs apollo_inputs Compares the content of the given apollo_inputs to
that in the global environment.

TRUE if the content is the
same, FALSE otherwise

apollo_conditionals model,
apollo_probabilities,
apollo_inputs

Calculates posterior expected values (conditionals)
of random coefficients, as well as their standard
deviations.

List of matrices, as many as
random parameters. Reports
indivID, mean and s.d. Of
random parameter for each
individual.

apollo_deltaMethod model,
deltaMethod_settings

Applies the delta method to calculate the standard
errors of transformations of parameters. If the
bootstrap covariance matrix is available, it is used.
If not, the robust covariance matrix is used.

Matrix contating calue, s.e. And
t-ratio resulting from the
operation. This is also printed
to screen.

apollo_detach apollo_beta,
apollo_inputs

Detaches variables attached by apollo_attach. Nothing.

apollo_dft dft_settings,
functionality

Calculate probabilities of a Decision Field Theory
(DFT) with external thresholds.

The returned object depends on
the value of argument
functionality.

apollo_el el_settings, functionality Calculates the probabilities of an exploded logit
model and can also perform other operations based
on the value of the functionality argument. The
function calculates the probability of a ranking as a
product of logit models with gradually reducing
availability, where scale differences can be allowed
for.

The returned object depends on
the value of argument
functionality.

apollo_estimate apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings

Estimates a model using the likelihood function
defined by apollo_probabilities.

model object

185

Function Arguments Description Output
apollo_firstRow P, apollo_inputs Given a multi-row input, keeps only the first row

for each individual.
Depends on inputs. If P is a
list, then it returns a list where
each element has only the first
row of each individual.

apollo_fitsTest model,
apollo_probabilities,
apollo_inputs,
fitsTest_settings

Given the predictions of a model, it compares the
fit across categories of observations.

Matrix with average fit per
category (invisibly).

apollo_initialise None Prepares environment (the global environment if
called by the user) for model definition and
estimation.

Nothing.

apollo_lc lc_settings,
apollo_inputs,
functionality

Using the conditional likelihoods of each latent
class, as well as teir classification probabilities,
calculate the weighted likelihood of the whole
model.

The returned object depends on
the value of argument
functionality

apollo_lcConditionals model,
apollo_probabilities,
apollo_inputs

Calculates posterior expected values (conditionals)
of class allocation probabilities for each individual.

A matrix with the posterior
class allocation probabilities for
each individual.

apollo_lcEM apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
[lcEM_settings],
[estimate_settings]

Uses the Expectation Maximisation (EM)
algorithm to estimate a latent class model.

A model object.

apollo_lcUnconditionals model,
apollo_probabilities,
apollo_inputs

Returns draws (unconditionals) for random
parameters in model, including interactions with
deterministic covariates

List of object, one per random
component and one for the class
allocation probabilities.

apollo_llCalc apollo_beta,
apollo_probabilities,
apollo_inputs, [silent]

Calculates the log-likelihood of each model
component as well as the whole model.

A list of vectors. Each vector
corresponds to the log-likelihood
of the whole model (first
element) or a model component.

apollo_loadModel modelName Loads an estimated model object from a file in the
current working directory.

A model object.

apollo_lrTest model1, model2 Calculates the likelihood ratio test and prints result. LL ratio test statistic (invisibly)
apollo_mdcev mdcev_settings,

functionality
Calculates the likelihood of a Multiple Discrete
Continuous Extreme Value (MDCEV) model.

The returned object depends on
the value of argument
functionality

186

Function Arguments Description Output
apollo_mdcnev mdcnev_settings,

functionality
Calculates the likelihood of a Multiple Discrete
Continuous Nested Extreme Value (MDCNEV)
model with an outside good.

The returned object depends on
the value of argument
functionality

apollo_mixEM apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
[mixEM_settings],
[estimate_settings]

Uses the Expectation Maximisation (EM)
algorithm to estimate an MNL model with
continuous random coefficients.

A model object.

apollo_mnl mnl_settings,
functionality

Calculates probabilities of a multinomial logit
model

The returned object depends on
the value of argument
functionality

apollo_modelOutput model,
modelOutput_settings

Prints estimation results to console. Amount of
information presented can be adjusted through
arguments.

A matrix of coefficients, s.d.
And t-tests (invisible)

apollo_nl nl_settings, functionality Calculates probabilities of a nested logit model. The returned object depends on
the value of argument
functionality

apollo_normalDensity normalDensity_settings,
functionality

Calculates density from a Normal distribution at a
specific value with a specified mean and standard
deviation.

The returned object depends on
the value of argument
functionality

apollo_ol ol_settings, functionality Calculates the probabilities of an ordered logit
model and can also perform other operations based
on the value of the functionality argument.

The returned object depends on
the value of argument
functionality

apollo_op op_settings, functionality Calculates the probabilities of an ordered probit
model and can also perform other operations based
on the value of the functionality argument.

The returned object depends on
the value of argument
functionality

apollo_outOfSample apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
[estimate_settings],
[outOfSample_settings]

Randomly generates estimation and validation
samples, estimates the model on the first and
calculates the likelihood for the second, then
repeats.

A matrix with the average
log-likelihood per observation
for estimation and validation
samples, for each repetition.
Files are written to the working
directory.

apollo_panelProd P, apollo_inputs,
functionality

Multiplies likelihood of observations from the same
individual, or adds the log of them.

Probabilities at the individual
level.

187

Function Arguments Description Output
apollo_prediction model,

apollo_probabilities,
apollo_inputs,
[prediction_settings],
[modelComponent]

Calculates apollo_probabilities with
functionality="prediction" and extracts one
element from the returned list.

A list containing predictions for
modelComponent as described
in apollo_probabilities. The
shape of the prediction will
depend on the model
component.

apollo_prepareProb P, apollo_inputs,
functionality

Checks that likelihoods, i.e. Probabilities in the
case of choice models, are in the appropiate format
to be returned.

The returned object depends on
the value of argument
functionality

apollo_readBeta apollo_beta,
apollo_fixed,
inputModelName,
[overwriteFixed]

Reads in parameters from a previously estimated
model and copies the values to the given
apollo_beta vector, only for those parameters
whose name matches.

Named numeric vector. Names
and updated starting values for
parameters.

apollo_saveOutput model,
[saveOutput_settings]

Writes files in the working directory with the
estimation results.

Nothing

apollo_searchStart apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
[searchStart_settings]

Given a set of starting values and a range for them,
searches for points with a better likelihood.

Named vector of model
parameters. These are the best
values found.

apollo_sharesTest model,
apollo_probabilities,
apollo_inputs,
sharesTest_settings

Prints tables comparing the shares predicted by the
model with the shares observed in the data.

Nothing

apollo_speedTest apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
[speedTest_settings]

A matrix with the average time
per evaluation for each number
of threads and draws
combination. A graph is also
plotted.

apollo_unconditionals model,
apollo_probabilities,
apollo_inputs

Returns draws (unconditionals) for random
parameters in model, including interactions with
deterministic covariates

List of matrices (inter draws) or
3-dim arrays (intra draws), one
per random coefficient. One row
per individual.

188

Function Arguments Description Output
apollo_validateInputs apollo_beta,

apollo_fixed, database,
apollo_control,
apollo_HB,
apollo_draws,
apollo_randCoeff,
apollo_lcPars, silent

Searches the user work space (.GlobalEnv) for all
necessary input to run apollo_estimate, and packs
it in a single list.

List grouping several required
input for model estimation.

apollo_weighting P, apollo_inputs,
functionality

Applies weights to individual observations in
likelihood function.

The likelihood of the model in
the appropriate form for the
given functionality, multiplied
by individual-specific weights.

189

Table D.2: Lists used by Apollo

Name of list Contents Description
apollo_control modelName, modelDescr, indivID, mixing, nCores,

workInLogs, seed, HB, noValidation, noDiagnostics,
panelData, analyticGrad

Global settings. Input for apollo_validateInput.

apollo_draws interDrawsType, interNDraws, interUnifDraws,
interNormDraws, intraDrawsType, intraNDraws,
intraUnifDraws, intraNormDraws

Settings for draws generation. Input for
apollo_validateInput.

apollo_HB hbDist, gNCREP, gNEREP, gINFOSKIP, gFULLCV,
constraintsNorm

Settings for Bayesian estimation. Input for
apollo_validateInput.

apollo_inputs database, apollo_control, apollo_HB, apollo_draws,
apollo_randCoeff, apollo_lcPars, draws

List grouping most common inputs. Created by
function apollo_validateInputs

bootstrap_settings nRep, samples, seed Settings for bootstraping parameter estimation.
Input for apollo_bootstrap.

choiceAnalysis_settings alternatives, avail, choiceVar, explanators, rows Settings for describing the conditional distribution
of choice. Input to apollo_choiceAnalysis.

cnl_settings alternatives, avail, choiceVar, V, cnlNests, cnlStructure,
rows

Settings for Cross Nested Logit. Input for
apollo_cnl.

combineResults_settings modelNames, printClassical, printPVal, printT1,
estimateDigits, tDigits, pDigits, sortByDate

Settings for combining multiple outputs. Input for
apollo_combineResults.

deltaMethod_settings operation, parName1, parName2, multiPar1, multiPar2 Settings for delta method. Input for
apollo_delta_method.

dft_settings alternatives, avail, choiceVar, attrValues, altStart,
attrWeights, attrScaling, procPars, rows

Settings for Decision Field Theory models. Input
for apollo_dft.

el_settings alternatives, avail, choiceVars, V, scales, rows Settings for exploded logit models. Input for
apollo_el.

estimate_settings estimationRoutine, maxIterations, writeIter,
hessianRoutine, printLevel, constraints, scaling,
numDeriv_settings, bootstrapSE, bootstrapSeed, silent

Settings for estimation. Input for apollo_estimate.

fitsTest_settings subsamples, modelComponent Settings for comparing model forecast fit between
subsamples of data. Input for apollo_fitsTest.

lc_settings inClassProb, classProb, componentName Settings for latent class modelling. Input for
apollo_lc

mdcev_settings V, alternatives, alpha, gamma, sigma, cost, avail,
continuousChoice, budget, minConsumption, outside,
rows, nRep

Settings for Multiple discrete-continuous models.
Input for apollo_mdcev.

190

Name of list Contents Description
mdcnev_settings V, alternatives, alpha, gamma, mdcnevNests,

mdcnevStructure, cost, avail, continuousChoice, budget,
minCOnsumption, outside, rows, componentName

Settings for Multiple discrete-continuous nested
models. Input for apollo_mdcnev.

mnl_settings alternatives, avail, choiceVar, V, rows Settings for Multinomial logit models. Input for
apollo_mnl.

model apollo_beta, apollo_control, apollo_draws, apollo_fixed,
apollo_lcPars, apollo_probabilities, apollo_randCoeff,
avgCP, avgLL, bootstrapSE, code, componentReport,
constraints, control, corrmat, eigValue, estimate,
estimationRoutine, fixed, gradient, gradientObs, hessian,
hessianMethodsAttempted, hessianMethodUsed,
hessianScaling, iterations, last.step, LL0, Llout, LLStart,
maximum, message, modelTypeList, nIndivs, nIter, nObs,
nObsTot, objectiveFn, Pout, robcorrmat, robse,
robvarcov, scaling, se, startTime, timeEst, timePost,
timePre, timeTaken, type, varcov

Object storing an estimated model. Output of
apollo_estimate.

modelOutput_settings PrintFixed, printClassical, printPVal, printT1,
printDataReport, printModelStructure, printCovar,
printCorr, printOutliers, printChange, printFunctions

Settings for printing model estimation results to
screen. Input for apollo_modelOutput.

nl_settings alternatives, avail, choiceVar, V, nlNests, nlStructure, rows Settings for Nested Logit models. Input for
apollo_nl.

normalDensity_settings outcomeNormal, xNormal, mu, sigma, rows Settings for linear models. Input for
apollo_normalDensity.

ol_settings outcomeOrdered, V, tau, coding, rows Settings for Ordered logit models. Input for
apollo_ol.

op_settings outcomeOrdered, V, tau, coding, rows Settings for Ordered probit models. Input for
apollo_op.

outOfSample_settings nRep, validationSize, samples Settings for cross validation. Input for
apollo_outOfSample.

prediction_settings modelComponent, runs, silent, nRep Settings for forecasting. Input for
apollo_prediction.

saveOutput_settings printClassical, printPVal, printT1, printDataReport,
printModelStructure, printCovar, printCorr, printOutliers,
printChange, printFunctions, saveEst, saveCov, saveCorr,
saveModelObject, writeF12

Settings for saving estimation results to disk. Input
for apollo_saveOutput.

191

Name of list Contents Description
searchStart_settings nCandidates, smartStart, apolloBetaMin, apolloBetaMax,

maxStages, dTest, gTest, llTest, bfgsIter
Settings for estimation algorithm with multiple
random starting points. Input for
apollo_searchStart.

sharesTest_settings alternatives, choiceVar, subsamples, modelComponent,
newAlts, newAltsOnly

Settings for comparing model forecast fit between
subsamples of data. For discrete choice models
only. Input for apollo_sharesTest.

speedTest_settings nDrawsTry, nCoresTry, nRep Settings for measuring estimation speed. Input for
apollo_speedTest.

192

Table D.3: Elements in lists and functions used by Apollo

Argument Dimensionality Type Description
alpha list numeric Alpha parameters of MDC(N)EV associated to each alternative,

including for the outside good. As many elements as alternatives.
alternatives vector numeric Names of alternatives and their corresponding value in

choiceVar. Should have as many elements as V
alternatives (MDCEV, MDCNEV) vector character Names of alternatives, elements must match the names in list

’V’. If using an outside good, it must include "outside".
altStart list numeric A named list with as many elements as alternatives. Each

elment can be a scalar or vector containing the starting
preference value for the alternative.

analyticGrad scalar logical TRUE for using analytical gradients during estimation (only
applicable to selected models). Default is TRUE.

apollo_beta vector numeric Named numeric vector. Names and values for parameters.
apolloBetaMax vector numeric Minimum possible value of parameters when generating

candidates. Ignored if smartStart is TRUE. Default is
apollo_beta - 0.1.

apolloBetaMin vector numeric Maximum possible value of parameters when generating
candidates. Ignored if smartStart is TRUE. Default is
apollo_beta + 0.1.

apollo_fixed vector character Character vector. Names (as defined in apollo_beta) of
parameters whose value should not change during estimation.

apollo_lcPars scalar function Function. Used with latent class models. Constructs a list of
parameters for each latent class. Receives two arguments:

apollo_probabilities scalar function Function. Returns probabilities of the model to be estimated.
Must receive three arguments:

apollo_randCoeff scalar function Function. Used with mixing models. Constructs the random
parameters of a mixing model. Receives two arguments:

attrScaling list numeric A named list with as many elements as attributes, or fewer.
Each element is a factor scaling the attribute value. AttrWeights
and attrScalings should not be both defined for an attribute.
Default is 1 for all attributes.

attrValues list numeric As many elements as alternatives. Each sub-list contains the
alternative attributes for each observation (usually a column
from the database). All alternatives must have the same
attributes (can be set to zero if not relevant).

193

Argument Dimensionality Type Description
attrWeights list numeric As many elements as attributes, or fewer. Each element is the

weight of the attribute. They should add up to one for each
observation and draw (if present), and will be re-scaled if they
do not. AttrWeights and attrScalings should not be both defined
for an attribute. Default is 1 for all attributes.

avail list numeric Availabilities of alternatives, one element per alternative. Names
of elements must match those in alternatives. Values can be a
vector of 0 or 1.

avgCP vector numeric Average likelihood for each individual at the estimated
parameters.

avgLL vector numeric Average log-likelihood for each individual at the estimated
parameters.

model1 scalar character/model Either a character variable with the name of a previously
estimated model, or an estimated model in memory, as returned
by apollo_estimate.

model2 scalar character/model Either a character variable with the name of a previously
estimated model, or an estimated model in memory, as returned
by apollo_estimate.

bfgsIter scalar numeric Number od BFGS iterations to perform at each stage to each
remaining candidate. Default is 20.

bootstrapSE scalar numeric Number of bootstrap samples to calculate standard errors.
Default is 0, meaning no bootstrap s.e. Will be calculated.
Number must zero or a positive integer. Only used if
apollo_control$HB is FALSE.

bootstrapSeed scalar numeric Random number generator seed to generate the bootstrap
samples. Only used if bootstrapSE>0. Default is 24.

budget vector numeric Budget for each observation.
choiceVar vector numeric Contains choices for all observations. It will usually be a column

from the database. Values are defined in alternatives.
choiceVars list numeric Contain choices for each position of the ranking. The list must

be ordered with the best choice first, second best second, etc. It
will usually be a list of columns from the database.

classProb vector/matrix/3-
dim
array

numeric Allocation probability for each class. One element per class, in
the same order as inClassProb.

194

Argument Dimensionality Type Description
cnlNests list numeric Lambda parameters for each nest. Elements must be named

according to nests. The lambda at the root is fixed to 1, and
therefore does not need to be defined.

cnlStructure matrix numeric One row per nest and one column per alternative. Each element
of the matrix is the alpha parameter of that (nest, alternative)
pair.

code scalar numeric Value indicating convergence (or lack of it) of an a model, as
defined by maxLik.

coding vector numeric/character Optional argument. Defines the order of the levels in
outcomeOrdered. The first value is associated with the lowest
level of outcomeOrdered, and the last one with the highest value.
If not provided, is assumed to be 1:(length(tau) + 1).

componentName scalar character Name given to model component.
componentReport scalar character Message indicating convergence (or lack of it) of an a model, as

defined by maxLik.
constraints vector character Constraints on parameters to estimate. For example c(’b1>0’,’b1

+ b2>1’). Only one of >, >= and = can be used. Parameter
names must be on the left. Must not include fixed parameters.

constraintsNorm vector character Constraints for random coefficients in bayesian estimation.
Constraints can be written as "b1>b2", "b1>0", or "b1<0".

continuousChoice list numeric Amount of consumption of each alternative. One element per
alternative, as long as the number of observations or a scalar.
Names must match those in alternatives.

control list numeric Control variables (hyperparameters) for maximum likelihood
estimation, as defined by maxLik.

corrmat matrix numeric Correlation matrix.
cost list numeric Price of each alternative. One element per alternative, each one

as long as the number of observations or a scalar. Names must
match those in alternatives.

database data.frame numeric/character data.frame. Data used by model.
draws list numeric Generated draws. They can be either matrices for

inter-individual draws, or a 3-dim array for intra-individual
draws.

dTest scalar numeric Tolerance for test 1. A candidate is discarded if its distance in
parameter space to a better one is smaller than dTest. Default is
1.

195

Argument Dimensionality Type Description
eigValue scalar numeric Maximum eigenvalue of the Hessian matrix for an estimated

model.
estimate vector numeric Value of estimated parameters (including fixed parameters).

estimateDigits scalar numeric Number of decimal places to print for estimates. Default is 4.
estimationRoutine scalar character Estimation method. Can take values "bfgs", "bhhh", or "nr".

Used only if apollo_control$HB is FALSE. Default is "bfgs".
explanators data.frame numeric/character Variables determining subsamples of the database. Values in

each column must describe a group or groups of individuals (e.g.
Socio-demographics). Most usually a subset of columns from
database.

fixed vector logical Vector indicating the free parameters to estimate. Only used by
maxLik, not Apollo.

functionality scalar character Description of the desired output from apollo_probabilities. Can
take the values: "estimate", "prediction", "validate",
"zero_LL", "conditionals", "output", "raw".

gamma list numeric Gamma parameters for each alternative, excluding any outside
good. As many elements as inside good alternatives.

gFULLCV scalar logical TRUE for estimating the full covariance matrix between random
coefficients.

gINFOSKIP scalar numeric A short summary of the Markov chain will be printed to screen
every gINFOSKIP number of draws.

gNCREP scalar numeric Number of burn-in draws to use prior to convergence. (Defaults
to 100000)

gNEREP scalar numeric Number of draws to keep for averaging after convergence has
been reached. (Defaults to 100000)

gradient vector numeric Gradient of the log-likelihood function at the estimated value of
the parameters.

gradientObs matrix numeric Observation-level score matrix, i.e. the gradient of the
log-likelihood function at the estimated parameter values at the
observation level.

gTest scalar numeric Tolerance for test 2. A candidate is discarded if the norm of its
gradient is smaller than gTest AND its LL is further than llTest
from a better candidate. Default is 10(̂-3).

HB scalar logical TRUE if using RSGHB for Bayesian estimation of model.
hbDist vector character Defines the distribution of each parameter to be estimated.

Possible values are "DNE", "F", "N", "LN+", "LN-", "CN+",
"CN-", and "JSB".

196

Argument Dimensionality Type Description
hessian matrix numeric Hessian (second derivative) of the log-likelihood function.

hessianMethodsAttempted vector character Name of the methods attempted to calculate the Hessian.
hessianMethodUsed scalar character Name of the methods used to calculate the Hessian reported in

model$hessian.
hessianRoutine scalar character Name of routine used to calculate the Hessian of the

loglikelihood function after estimation. Valid values are
"numDeriv" (default) and "maxLik" to use the routines in those
packages, and "none" to avoid estimating the Hessian (and the
covariance matrix). Only used if apollo_control$HB=FALSE.

hessianScaling vector numeric Scaling used to calculate the Hessian. By default, they will be
equal to the estimated value of the parameters.

inClassProb vector/matrix/3-
dim
array

numeric Conditional likelihood for each class. One element per class, in
the same order as classProb.

indivID scalar character Name of column in the database with each decision maker’s ID.
inputModelName scalar character Character. modelName for model from which results are used as

starting values.
interDrawsType scalar character Type of inter-individual draws

(’halton’,’mlhs’,’pmc’,’sobol’,’sobolOwen’, ’sobolFaureTezuka’,
’sobolOwenFaureTezuka’ or the name of an object loaded in
memory, see manual in www.ApolloChoiceModelling.com for
details).

interNDraws scalar numeric Number of inter-individual draws per individual. Should be set
to 0 if not using them.

interNormDraws vector character Names of normaly distributed inter-individual draws.
interUnifDraws vector character Names of uniform-distributed inter-individual draws.
intraDrawsType scalar character Type of intra-individual draws

(’halton’,’mlhs’,’pmc’,’sobol’,’sobolOwen’,’sobolFaureTezuka’,
’sobolOwenFaureTezuka’ or the name of an object loaded in
memory).

intraNDraws scalar numeric Number of intra-individual draws per individual. Should be set
to 0 if not using them.

intraNormDraws vector character Names of normaly distributed intra-individual draws.
intraUnifDraws vector character Names of uniform-distributed intra-individual draws.

iterations scalar numeric Number of iterations of the maximum likelihood estimation
according to maxLik (not Apollo).

197

Argument Dimensionality Type Description
last.step list numeric List describing last unsuccessful iteration, if model$code=3 (i.e.

if there was an error during maximum likelihood estimation).
LL0 scalar numeric Log-likelihood of the null (equiprobable) model, if applicable

(only for models with a single MNL, NL or CNL component)
Llout vector numeric Log-likelihood of each model component at the estimated

parameter values. At the sample level.
LLStart scalar numeric Log-likelihood value at the starting value of the parameters.

llTest scalar numeric Tolerance for test 2. A candidate is discarded if the norm of its
gradient is smaller than gTest AND its LL is further than llTest
from a better candidate. Default is 3.

maximum scalar numeric Log-likelihood value at the estimated parameter values.
maxIterations scalar numeric Maximum number of iterations of the estimation routine before

stopping. Used only if apollo_control$HB is FALSE. Default is
200.

maxStages scalar numeric Maximum number of search stages. The algorithm will stop
when there is only one candidate left, or if it reaches this number
of stages. Default is 5.

mdcnevNests list numeric Lambda parameters for each nest. Elements must be named
with the nest name. The lambda at the root is fixed to 1, and
therefore must be no be defined. The value of the estimated
mdcnevNests parameters should be between 0 and 1 to ensure
consistency with random utility maximization.

mdcnevStructure matrix numeric One row per nest and one column per alternative. Each element
of the matrix is 1 if an alternative belongs to the corresponding
nest.

message scalar character Message describing convergence (successful or not), as generated
by maxLik.

minConsumption list numeric Minimum consumption of the alternatives, if consumed. As
many elements as alternatives. Names must match those in
alternatives.

mixing scalar logical TRUE for models that include random parameters.
modelComponent scalar character Deprecated. Same as modelComponent inside

prediction_settings.
modelDescr scalar character Description of the model. Used in output files.
modelName scalar character Name of the model to load.
modelNames vector character List of names of models to combine. Use an empty vector to

combine results from all models in the directory.

198

Argument Dimensionality Type Description
modelTypeList vector character Vector indicating the type of model (MNL, NL, etc.) of each

model component.
mu scalar/vector numeric Intercept of the linear model.

multiPar1 scalar numeric A value to scale parName1.
multiPar2 scalar numeric A value to scale parName2.

nCandidates scalar numeric Number of candidate sets of parameters to be used at the start.
Should be an integer bigger than 1. Default is 100.

nCores scalar numeric Number of threads (processors) to use in estimation of the
model.

nCoresTry vector numeric Number of threads to try. Default is from 1 to the detected
number of cores.

nDrawsTry vector numeric Number of inter and intra-person draws to try. Default value is
c(50, 100, 200).

newAlts list numeric Optional list describing the new alternatives to be used by
apollo_sharesTest. This should have as many elements as new
alternatives, with each entry be- ing a matrix of 0-1 entries, with
one row per observation, and one column per alternative used in
the model.

newAltsOnly scalar logical f TRUE, results will only be printed for the ’new’ alternatives
defined in newAlts, not the original alternatives used in the
model. Set to FALSE by default.

nIndivs scalar numeric Number of individuals in the database.
nIter scalar numeric Number of iterations necessary for convergence, as counted by

Apollo.
nlNests list numeric Lambda parameters for each nest. Elements must be named

with the nest name. The lambda at the root is fixed to 1 if
excluded (recommended).

nlStructure matrix numeric As many elements as nests, it must include the "root". Each
element contains the names of the nests or alternatives that
belong to it. Element names must match those in nlNests.

nObs scalar numeric Number of observations in the database, counted as rows in the
database.

nObsTot vector numeric Number of observations per model component, not counting
excluding rows.

noDiagnostics scalar logical TRUE if user does not wish model diagnostics to be printed -
FALSE by default.

199

Argument Dimensionality Type Description
noValidation scalar logical TRUE if user does not wish model input to be validated before

estimation - FALSE by default.
nRep scalar numeric Number of repetitions.

numDeriv_settings list numeric/character Additional arguments to the Richardson method used by
numDeriv to calculate the Hessian. See argument method.args in
grad for more details.

objectiveFn scalar function Loglikelihood function generated by Apollo to mask
apollo_probabilities from maxLik.

operation scalar character Function to calculate the delta method for. See details.
outcomeNormal vector normal Numeric vector. Dependant variable.
outcomeOrdered vector normal Dependant variable. The coding of this variable is assumed to be

from 1 to the maximum number of different levels. For example,
if the ordered response has three possible values: "never",
"sometimes" and "always", then it is assumed that
outcomeOrdered contains "1" for "never", "2" for "sometimes",
and 3 for "always". If another coding is used, then it should be
specified using the coding argument.

outside scalar character Optional name of the outside good.
overwriteFixed scalar logical Boolean. TRUE if starting values for fixed parameters should

also be updated from input file.
P vector/matrix/3-

dim
array

numeric List of vectors, matrices or 3-dim arrays. Likelihood of the
model components.

panelData scalar logical TRUE if using panelData data (created automatically by
apollo_validateControl).

parName1 scalar character Name of the first parameter.
parName2 scalar character Name of the second parameter. Optional depending on

operation.
pDigits scalar numeric Number of decimal places to print for p-values. Default is 2.

Pout vector numeric Loglikelihood value of all models components at the estimated
parameter values. At the sample level.

printChange scalar logical TRUE for printing difference between starting values and
estimates. FALSE by default.

printClassical scalar logical TRUE for printing classical standard errors. TRUE by default.
printCorr scalar logical TRUE for printing parameters correlation matrix. If

printClassical=TRUE, both classical and robust matrices are
printed. FALSE by default.

200

Argument Dimensionality Type Description
printCovar scalar logical TRUE for printing parameters covariance matrix. If

printClassical=TRUE, both classical and robust matrices are
printed. FALSE by default.

printDataReport scalar logical TRUE for printing summary of choices in database and other
diagnostics. FALSE by default.

printFixed scalar logical TRUE for printing fixed parameters among esti- mated
parameter. TRUE by default.

printFunctions scalar logical TRUE for printing apollo_control, apollo_randCoeff (when
available), apollo_lcPars (when available) and
apollo_probabilities. TRUE by default.

printLevel scalar logical Higher values render more verbous outputs. Can take values 0,
1, 2 or 3. Ignored if apollo_control$HB is TRUE. Default is 3.

printModelStructure scalar logical TRUE for printing model structure. TRUE by default.
printOutliers scalar logical TRUE for printing 20 individuals with worst average fit across

observations. FALSE by default. If Scalar is given, this replaces
the default of 20.

printPVal scalar logical TRUE for printing p-values. FALSE by default.
printT1 scalar logical If TRUE, t-test for H0: apollo_beta=1 are printed. FALSE by

default.
procPars list numeric A list containing the four DFT ’process parameters’: error_sd,

timesteps, phi1, and phi2.
robcorrmat matrix numeric Robust correlation matrix of estimated parameters. Excludes

fixed parameters.
robse matrix numeric Robust s.e. of estimated parameters. Includes fixed parameters.

robvarcov matrix numeric Robust covariance matrix of estimated parameters. Excludes
fixed parameters.

rows vector logical Consideration of rows in the likelihood calculation, FALSE to
exclude. Length equal to the number of observations (nObs).
Default is "all", equivalent to rep(TRUE, nObs).

runs scalar numeric Number of runs to use for computing confidence intervals of
predictions.

201

Argument Dimensionality Type Description
samples matrix/data.frame numeric Optional argument. Must have as many rows as observations in

the database, and as many columns as number of repetitions
wanted. Each column represents a re-sample, and each element
the number of times that observation must be included in the
sample. If this argument is provided, then nRep is ignored. Note
that this allows sampling at the observation rather than the
individual level, which is not recommended for panel data.

saveCorr scalar logical TRUE for saving estimated correlation matrix to a CSV file.
TRUE by default.

saveCov scalar logical TRUE for saving estimated correlation matrix to a CSV file.
TRUE by default.

saveEst scalar logical TRUE for saving estimated parameters and standard errors to a
CSV file. TRUE by default.

saveModelObject scalar logical TRUE to save the R model object to a file (use
apollo_loadModel to load it to memory). TRUE by default.

scales list numeric Scale factors of each logit model. Should have one element less
than choiceVars. At least one element should be normalized to 1.
If omitted, scale=1 for all positions is assumed.

scaling vector numeric Names of elements should match those in apollo_beta. Optional
scaling for parameters. If provided, for each parameter i,
(apollo_beta[i]/scaling[i]) is optimised, but
scaling[i]*(apollo_beta[i]/scaling[i]) is used during estimation.
For example, if parameter b3=10, while b1 and b2 are close to 1,
then setting scaling = c(b3=10) can help estimation, specially
the calculation of the Hessian. Reports will still be based on the
non-scaled parameters.

se vector numeric Standard errors of estimated parameters. Includes fixed
parameters.

seed scalar numeric Seed for random number generation.
sigma scalar numeric Variance or scale parameter of the random error component.
silent scalar logical If TRUE, no information is printed to the console by the

function. Default is FALSE.
smartStart scalar logical If TRUE, candidates are randomly generated with more chances

in the directions the Hessian indicates improvement of the LL
function. Default is FALSE.

sortByDate scalar logical If TRUE, models are ordered by date.

202

Argument Dimensionality Type Description
startTime scalar POSIX POSIX date object recording the time when the full estimation

processes started.
subsamples list logical Each element of the list defines whether a given observation

belongs to a given subsample (e.g. By sociodemographics).
tau list numeric List of numeric elements representing thresholds. As many

elements as different levels in the dependent variable - 1.
Extreme thresholds are assumed to be -inf and +inf. Can also be
a matrix with nObs rows and nThresholds columns.

tDigits scalar numeric Number of decimal places to print for t-ratios values. Default is
2.

timeEst scalar numeric Time (in seconds) taken by the estimation algorithm (excludes
pre and post-processing).

timePost scalar numeric Time (in seconds) taken by the post-estimation processing
(including the calculation of the covariance matrix).

timePre scalar numeric Time (in seconds) taken by the pre-estimation processing
(including validation and symbolic calculation of gradient).

timeTaken scalar numeric Time (in seconds) taken by the full estimation process (pre and
post-estimation calculations included).

type scalar character Type of maximisation (algorithm) as defined by maxLik.
V list numeric Utilities (or base utilities) of the alternatives. Names of elements

must match those in alternatives.
validationSize scalar numeric Size of the validation sample. Can be a percentage of the sample

(0-1) or the number of individuals in the validation sample (>1).
Default is 0.1.

varcov matrix numeric Covariance matrix of estimated parameters. Excludes fixed
parameters.

weights scalar character Name of column in database containing weights for estimation.
workInLogs scalar logical TRUE for higher numeric stability at the expense of

computational time. Useful for panel models only. Default is
FALSE.

writeF12 scalar logical TRUE for writing results into an F12 file (ALOGIT format).
FALSE by default.

writeIter scalar logical Writes value of the parameters in each iteration to a csv file.
Works only if estimation_routine="bfgs". Default is TRUE.

xNormal vector numeric Single explanatory variable.

203

Appendix E

Detailed description of model object

Table E.1 presents an overview of all elements inside a model object produced by Apollo during
estimation, together with their description and for what kind of model it is generated.

204

Table E.1: Elements inside a model object estimated by Apollo

Element Type Description for models
apollo_beta Named numeric

vector
Starting value of parameters all models

apollo_control List Main model settings, as validated by apollo_validateInputs all models
apollo_draws List of numeric

matrix or 3-dim
arrays

Contains the draws for models with mixing. With mixing (NA
otherwise)

apollo_fixed Character vector Name of fixed parameters. NULL for none. all models
apollo_lcPars Function Function that groups parameters per latent class and calculate

class allocation probabilities. As defined by the user.
With latent classes
(NA otherwise)

apollo_probabilities Function Function that calculates the likelihood of the whole model. As
defined by the user.

all models

apollo_randCoeff Function Function that generates the random coefficients used in the
likelihood function. As defined by the user.

With mixing (NA
otherwise)

avgCP Numeric vector Average likelihood for each individual at the estimated parameter
values. As many elements as individuals in the sample.

all models

avgLL Numeric vector Average log-likelihood for each individual at the estimated
parameter values. As many elements as individuals in the
sample.

all models

bootstrapSE Numeric scalar Number of bootstrap repetitions used to calculate the bootstrap
standard errors.

with bootstrap s.e.
(0 otherwise)

code Numeric scalar Success code from maxLik (and optim). 0 means succesful
estimation.

all models
estimated with
Maximum
Likelihood.

componentReport List Contains the report on each model component dependant
variable as a list of character vectors.

all models

constraints List List describing the constraints used during estimation in maxLik
format.

With constraints
estimated using
Maximum
Likelihood

control List Settings of the maximum likelihood optimisation algorithm. all models
estimated with
Maximum
Likelihood.

corrmat matrix Correlation matrix of (non-fixed) estimated parameters all models

205

Element Type Description for models
eigValue Numeric scalar Maximum eigenvalue of the Hessian matrix at the parameter

estimates
all models
estimated with
Maximum
Likelihood.

estimate Numeric vector Value of estimated parameters (including fixed ones) all models
estimated with
Maximum
Likelihood.

estimationRoutine Scalar character Name of the estimation algorithm all models
estimated with
Maximum
Likelihood.

fixed Named logical
vector

Only contains the names of non-fixed parameters, with a FALSE
value associated to them. Used by maxLik, not Apollo.

all models
estimated with
Maximum
Likelihood.

gradient Named numerical
vector

Gradient of the log-likelihood function at the estimated value of
the parameters.

all models
estimated with
Maximum
Likelihood.

gradientObs Numerical matrix Observation-level score matrix, i.e. the gradient of the
log-likelihood function at the estimated parameter values at the
observation level.

all models

hessian Numerical matrix Hessian (second derivative) of the log-likelihood function. all models
hessianMethodsAttempted Character vector Name of the methods attempted to calculate the Hessian. all models

hessianMethodUsed Scalar character Name of the methods used to calculate the Hessian reported in
model$hessian.

all models

hessianScaling Named numeric
vector

Scaling used to calculate the Hessian. By default, they will be
equal to the estimated value of the parameters.

all models

iterations Numeric scalar Number of iterations of the maximum likelihood estimation
according to maxLik (not Apollo).

all models
estimated with
Maximum
Likelihood.

last.step List List describing last unsuccessful iteration, if model$code=3 (i.e.
if there was an error during maximum likelihood estimation).

all models
estimated with
Maximum
Likelihood.

206

Element Type Description for models
LL0 Numeric scalar Log-likelihood of the null (equiprobable) model, if applicable

(only for models with a single MNL, NL or CNL component)
all models. NA if
not applicable.

Llout Named numeric
vector

Log-likelihood of each model component at the estimated
parameter values. At the sample level.

all models

LLStart Numeric scalar Log-likelihood value at the starting value of the parameters. all models
maximum Numeric scalar Log-likelihood value at the estimated parameter values. all models
message Scalar character Message describing convergence (successful or not), as generated

by maxLik.
all models
estimated with
Maximum
Likelihood.

modelTypeList Character vector Vector indicating the type of model (MNL, NL, etc.) of each
model component.

all models

nIndivs Numeric scalar Number of individuals in the database. all models
nIter Numeric scalar Number of iterations necessary for convergence, as counted by

Apollo.
all models
estimated with
Maximum
Likelihood.

nObs Numeric scalar Number of observations in the database, counted as rows in the
database.

all models

nObsTot Numeric vector Number of observations per model component, not counting
excluding rows.

all models

objectiveFn Function Loglikelihood function generated by Apollo to mask
apollo_probabilities from maxLik.

all models

Pout Named list Loglikelihood value of all models components at the estimated
parameter values. At the sample level.

all models

robcorrmat Numeric matrix Robust correlation matrix of estimated parameters. Excludes
fixed parameters.

all models

robse Named numeric
vector

Robust s.e. of estimated parameters. Includes fixed parameters. all models

robvarcov Numeric matrix Robust covariance matrix of estimated parameters. Excludes
fixed parameters.

all models

scaling Named numeric
vector

Scaling parameters used during model estimation (does not
include fixed parameters)

all models

se Named numeric
vector

Standard errors of estimated parameters. Includes fixed
parameters.

all models

startTime Date object POSIX date object recording the time when the full estimation
processes started.

all models

207

Element Type Description for models
timeEst Numeric scalar Time (in seconds) taken by the estimation algorithm (excludes

pre and post-processing).
all models

timePost Numeric scalar Time (in seconds) taken by the post-estimation processing
(including the calculation of the covariance matrix).

all models

timePre Numeric scalar Time (in seconds) taken by the pre-estimation processing
(including validation and symbolic calculation of gradient).

all models

timeTaken Numeric scalar Time (in seconds) taken by the full estimation process (pre and
post-estimation calculations included).

all models

type Scalar character Type of maximisation (algorithm) as defined by maxLik. all models
estimated with
Maximum
Likelihood.

varcov Numeric matrix Covariance matrix of estimated parameters. Excludes fixed
parameters.

all models

208

Bibliography

Abou-Zeid, M., Ben-Akiva, M., 2014. Hybrid choice models, in: Hess, S., Daly, A. (Eds.),
Handbook of Choice Modelling. Edward Elgar. chapter 17, pp. 383–412.

ALogit, 2016. ALOGIT 4.3. ALOGIT Software & Analysis Ltd. URL: www.alogit.com.

Axhausen, K.W., Hess, S., König, A., Abay, G., Bates, J.J., Bierlaire, M., 2008. State of the art
estimates of the swiss value of travel time savings. Transport Policy 15, 173–185.

Ben-Akiva, M., Swait, J., 1986. The akaike likelihood ratio index. Transportation Science 20,
133–136.

Berndt, E., Hall, B., Hall, R., Hausman, J., 1974. Estimation and inference in non-linear structural
models. Annals of Economic and Social Measurement 3/4, 653–665.

Bhat, C., 1997. An endogenous segmentation mode choice model with an application to intercity
travel. Transportation Science 31, 34–48.

Bhat, C.R., 2003. Simulation estimation of mixed discrete choice models using randomized and
scrambled Halton sequences. Transportation Research Part B 37, 837–855.

Bhat, C.R., 2008. The multiple discrete-continuous extreme value (mdcev) model: role of util-
ity function parameters, identification considerations, and model extensions. Transportation
Research Part B: Methodological 42, 274–303.

Bierlaire, M., 2003. BIOGEME: a free package for the estimation of discrete choice models.
Proceedings of the 3rd Swiss Transport Research Conference, Monte Verità, Ascona.

Bierlaire, M., Thémans, M., Zufferey, N., 2010. A heuristic for nonlinear global optimization.
INFORMS Journal on Computing 22, 59–70.

Bradley, M.A., Daly, A., 1996. Estimation of logit choice models using mixed stated-preference
and revealed-preference information, in: Stopher, P.R., Lee-Gosselin, M. (Eds.), Understanding
Travel Behaviour in an Era of Change. Elsevier, Oxford. chapter 9, pp. 209–231.

Broyden, C.G., 1970. The convergence of a class of double-rank minimization algorithms 1. general
considerations. IMA Journal of Applied Mathematics 6, 76–90.

209

www.alogit.com

Busemeyer, J.R., Townsend, J.T., 1992. Fundamental derivations from decision field theory.
Mathematical Social Sciences 23, 255–282.

Busemeyer, J.R., Townsend, J.T., 1993. Decision field theory: a dynamic-cognitive approach to
decision making in an uncertain environment. Psychological Review 100, 432.

Calastri, C., Hess, S., Daly, A., Carrasco, J.A., 2017. Does the social context help with under-
standing and predicting the choice of activity type and duration? an application of the multiple
discrete-continuous nested extreme value model to activity diary data. Transportation Research
Part A: Policy and Practice 104, 1–20.

Calastri, C., Crastes dit Sourd, R., Hess, S., 2019. We want it all: experiences from a survey
seeking to capture social network structures, lifetime events and short-term travel activity
planning. Transportation forthcoming.

Chiou, L., Walker, J., 2007. Masking identification of discrete choice models under simulation
methods. Journal of Econometrics 141, 683–703.

Chorus, C., 2010. A new model of random regret minimization. European Journal of Transport
and Infrastructure Research 10, 181–196.

van Cranenburgh, S., Guevara, C.A., Chorus, C.G., 2015. New insights on random regret
minimization models. Transportation Research Part A: Policy and Practice 74, 91–109.
doi:10.1016/j.tra.2015.01.008.

Daly, A., 1987. Estimating Tree Logit models. Transportation Research Part B 21, 251–267.

Daly, A., Hess, S., de Jong, G., 2012a. Calculating errors for measures derived from choice
modelling estimates. Transportation Research Part B 46, 333–341.

Daly, A., Zachary, S., 1978. Improved multiple choice models, in: Hensher, D.A., Dalvi, Q. (Eds.),
Identifying and Measuring the Determinants of Mode Choice. Teakfields, London, pp. 335–357.

Daly, A.J., Hess, S., Patruni, B., Potoglou, D., Rohr, C., 2012b. Using ordered attitudinal
indicators in a latent variable choice model: A study of the impact of security on rail travel
behaviour. Transportation 39, 267–297.

Doornik, J.A., 2001. Ox: An Object-Oriented Matrix Language. Timberlake Consultants Press,
London.

Dumont, J., Keller, J., 2019. RSGHB: Functions for Hierarchical Bayesian Estimation: A Flexible
Approach. URL: https://CRAN.R-project.org/package=RSGHB. r package version 1.2.1.

Faure, H., Tezuka, S., 2000. Another random scrambling of digital (t,s)-sequences, in: Fang,
K.T., Hickernell, F.J., Niederreiter, H. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods.
Springer, pp. 242–256.

210

http://dx.doi.org/10.1016/j.tra.2015.01.008
https://CRAN.R-project.org/package=RSGHB

Fletcher, R., 1970. A new approach to variable metric algorithms. The computer journal 13,
317–322.

Fosgerau, M., Mabit, S.L., 2013. Easy and flexible mixture distributions. Economics Letters 120,
206 – 210.

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches to the calculations of
posterior moments. Bayesian statistics 4, 641–649.

Giergiczny, M., Dekker, T., Hess, S., Chintakayala, P., 2017. Testing the stability of utility para-
meters in repeated best, repeated best-worst and one-off best-worst studies. European Journal
of Transport and Infrastructure Research 17, 457–476. URL: http://eprints.whiterose.ac.
uk/118496/. © 2017, Author(s). Reproduced in accordance with the publisher’s self-archiving
policy.

Gilbert, P., Varadhan, R., 2016. numDeriv: Accurate Numerical Derivatives. URL: https:
//CRAN.R-project.org/package=numDeriv. r package version 2016.8-1.

Goldfarb, D., 1970. A family of variable metric updates derived by variational means, v. 24.
Mathematics of Computation .

Greene, W.H., Hensher, D.A., 2013. Revealing additional dimensions of preference heterogeneity
in a latent class mixed multinomial logit model. Applied Economics 45, 1897–1902.

Halton, J., 1960. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik 2, 84–90.

Hancock, T.O., Hess, S., Choudhury, C.F., 2018. Decision field theory: Improvements to cur-
rent methodology and comparisons with standard choice modelling techniques. Transportation
Research Part B: Methodological 107, 18–40.

Hancock, T.O., Hess, S., Choudhury, C.F., 2019. An accumulation of preference: two alternative
dynamic models for understanding transport choices. Submitted .

Henningsen, A., Toomet, O., 2011. maxlik: A package for maximum likelihood estima-
tion in R. Computational Statistics 26, 443–458. URL: http://dx.doi.org/10.1007/
s00180-010-0217-1, doi:10.1007/s00180-010-0217-1.

Hensher, D.A., Louviere, J.J., Swait, J., 1998. Combining sources of preference data. Journal of
Econometrics 89, 197–221.

Hess, S., 2005. Advanced discrete choice models with applications to transport demand. Ph.D.
thesis. Centre for Transport Studies, Imperial College London.

Hess, S., 2014. 14 latent class structures: taste heterogeneity and beyond, in: Handbook of choice
modelling. Edward Elgar Publishing Cheltenham, pp. 311–329.

211

http://eprints.whiterose.ac.uk/118496/
http://eprints.whiterose.ac.uk/118496/
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
http://dx.doi.org/10.1007/s00180-010-0217-1
http://dx.doi.org/10.1007/s00180-010-0217-1
http://dx.doi.org/10.1007/s00180-010-0217-1

Hess, S., Bierlaire, M., Polak, J.W., 2007a. A systematic comparison of continuous and discrete
mixture models. European Transport 36, 35–61.

Hess, S., Daly, A., 2014. Handbook of Choice Modelling. Edward Elgar publishers, Cheltenham.

Hess, S., Daly, A., Dekker, T., Cabral, M.O., Batley, R., 2017. A framework for capturing
heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in
value of time research. Transportation Research Part B: Methodological 96, 126 – 149.

Hess, S., Polak, J.W., Daly, A., Hyman, G., 2007b. Flexible Substitution Patterns in Models of
Mode and Time of Day Choice: New evidence from the UK and the Netherlands. Transportation
34, 213–238.

Hess, S., Rose, J.M., Hensher, D.A., 2008. Asymmetric preference formation in willingness to pay
estimates in discrete choice models. Transportation Research Part E 44, 847–863.

Hess, S., Stathopoulos, A., Daly, A.J., 2012. Allowing for heterogeneous decision rules in discrete
choice models: an approach and four case studies. Transportation 39, 565–591.

Hess, S., Train, K., 2011. Recovery of inter- and intra-personal heterogeneity using mixed logit
models. Transportation Research Part B 45, 973–990.

Hess, S., Train, K., 2017. Correlation and scale in mixed logit models. Journal of Choice Modelling
23, 1–8.

Hess, S., Train, K., Polak, J.W., 2006. On the use of a Modified Latin Hypercube Sampling
(MLHS) method in the estimation of a Mixed Logit model for vehicle choice. Transportation
Research Part B 40, 147–163.

Hotaling, J.M., Busemeyer, J.R., Li, J., 2010. Theoretical developments in decision field theory:
comment on Tsetsos, Usher, and Chater (2010). Psychological Review 117, 1294–1298.

Huber, P., 1967. The behavior of maximum likelihood estimation under nonstandard conditions,
in: LeCam, L., Neyman, J. (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathem-
atical Statistics and Probability. University of California Press, pp. 221–233.

Koppelman, F.S., Wen, C.H., 1998. Alternative Nested Logit Models: structure, properties and
estimation. Transportation Research Part B 32, 289–298.

Krinsky, I., Robb, A., 1986. On approximating the statistical properties of elasticities. Review of
Economics and Statistics 68, 715–719.

Lancsar, E., Louviere, J., Donaldson, C., Currie, G., Burgess, L., 2013. Best worst discrete
choice experiments in health: Methods and an application. Social Science & Medicine 76,
74 – 82. URL: http://www.sciencedirect.com/science/article/pii/S0277953612007290,
doi:https://doi.org/10.1016/j.socscimed.2012.10.007.

212

http://www.sciencedirect.com/science/article/pii/S0277953612007290
http://dx.doi.org/https://doi.org/10.1016/j.socscimed.2012.10.007

Lenk, P., 2014. Bayesian estimation of random utility models, in: Handbook of Choice Modelling.
Edward Elgar Publishing. Chapters. chapter 20, pp. 457–497. URL: https://ideas.repec.
org/h/elg/eechap/14820_20.html.

Louviere, J.J., Woodworth, G., 1983. Design and analysis of simulated consumer choice and
allocation experiments: A method based on aggregate data. Journal of Marketing Research 20,
350–367.

Luce, R., 1959. Individual choice behavior: a theoretical analysis. J.Wiley and Sons, New York.

McFadden, D., 1974. Conditional logit analysis of qualitative choice behaviour, in: Zarembka, P.
(Ed.), Frontiers in Econometrics. Academic Press, New York, pp. 105–142.

McFadden, D., 1978. Modelling the choice of residential location, in: Karlqvist, A., Lundqvist,
L., Snickars, F., Weibull, J.W. (Eds.), Spatial Interaction Theory and Planning Models. North
Holland, Amsterdam. chapter 25, pp. 75–96.

McFadden, D., 2000. Economic Choices. Nobel Prize Lecture. URL: https://www.nobelprize.
org/uploads/2018/06/mcfadden-lecture.pdf.

McFadden, D., Train, K., 2000. Mixed MNL Models for discrete response. Journal of Applied
Econometrics 15, 447–470.

Owen, A.B., 1995. Randomly permuted (t,m,s)-nets and (t,s)-sequences, in: Niederreiter, H.,
Shiue, J.S. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing.
Springer, New York, pp. 351–368.

Palma, D., 2016. Modelling wine consumer preferences using hybrid choice models: inclusion of
intrinsic and extrinsic attributes. Ph.D. thesis. School of Engineering, Pontificia Universidad
Católica de Chile.

Pinjari, A.R., Bhat, C., 2010a. A multiple discrete–continuous nested extreme value (mdcnev)
model: formulation and application to non-worker activity time-use and timing behavior on
weekdays. Transportation Research Part B: Methodological 44, 562–583.

Pinjari, A.R., Bhat, C.R., 2010b. An efficient forecasting procedure for kuhn-tucker consumer
demand model systems: application to residential energy consumption analysis. Technical
paper, Department of Civil and Environmental Engineering, University of South Florida , 263–
285.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.

Roe, R.M., Busemeyer, J.R., Townsend, J.T., 2001. Multialternative decision field theory: A
dynamic connectionist model of decision making. Psychological Review 108, 370.

RStudio Team, 2015. Rstudio: Integrated development for r. RStudio, Inc., Boston, MA URL
http://www.rstudio.com/ .

213

https://ideas.repec.org/h/elg/eechap/14820_20.html
https://ideas.repec.org/h/elg/eechap/14820_20.html
https://www.nobelprize.org/uploads/2018/06/mcfadden-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/mcfadden-lecture.pdf
https://www.R-project.org/

Shanno, D.F., 1970. Conditioning of quasi-newton methods for function minimization. Mathem-
atics of computation 24, 647–656.

Sobol’, I.M., 1967. On the distribution of points in a cube and the approximate evaluation of
integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7, 784–802.

Train, K., 2009. Discrete Choice Methods with Simulation. second edition ed., Cambridge Uni-
versity Press, Cambridge, MA.

Train, K., Weeks, M., 2005. Discrete choice models in preference space and willingness-to-pay
space, in: Scarpa, R., Alberini, A. (Eds.), Application of simulation methods in environmental
and resource economics. Springer, Dordrecht. chapter 1, pp. 1–16.

Vovsha, P., 1997. Application of a Cross-Nested Logit model to mode choice in Tel Aviv, Israel,
Metropolitan Area. Transportation Research Record 1607, 6–15.

Walker, J.L., Ben-Akiva, M., Bolduc, D., 2007. Identification of parameters in normal error
component logit-mixture (neclm) models. Journal of Applied Econometrics 22, 1095–1125.

Weisberg, S., 2005. Applied Linear Regression. Third ed., Wiley, Hoboken NJ. URL: http:
//www.stat.umn.edu/alr.

Wen, C.H., Koppelman, F.S., 2001. The Generalized Nested Logit Model. Transportation Re-
search Part B 35, 627–641.

Williams, H.C.W.L., 1977. On the Formulation of Travel Demand Models and Economic Evalu-
ation Measures of User Benefit. Environment & Planning A 9, 285–344.

Yáñez, M.F., Cherchi, E., Heydecker, B., Ortúzar, J. de D., 2011. On the treatment of repeated
observations in panel data: Efficiency of mixed logit parameter estimates. Networks and Spatial
Economics 11, 393–418.

214

http://www.stat.umn.edu/alr
http://www.stat.umn.edu/alr

Index: Apollo syntax

This section provides an index covering each Apollo function and key lists/elements. Functions
are differentiated by being followed by (). Elements of lists are preceded by $. For each function
or list, a link to a syntax example is given where available. We also provide links to the use of
the four datasets.

apollo_attach() . 26
syntax example . 25

apollo_avgInterDraws() 73
bayesian estimation 97
syntax example . 72

apollo_avgIntraDraws() 73
bayesian estimation 97
syntax example . 72

apollo_basTest() . 105
syntax example . 106

apollo_beta . 22
syntax example . 23

apollo_bootstrap() 129
$bootstrap_settings 130
$nRep .130
$samples . 130
$seed .130

syntax example . 131
interruption .130

apollo_choiceAnalysis()101
$choiceAnalysis_settings 101
$alternatives 101
$avail . 101
$choiceVar .101
$explanators 102
$rows .102

syntax example . 102

apollo_cnl() .42
$cnl_settings . 42
$alternatives 42
$avail . 42
$choiceVar . 42
$cnlNests . 42
$cnlStructure 42
$componentName 42
$rows .42
$V . 42

syntax example . 43
apollo_combineModels() 85

P in hybrid . 85
syntax example . 87

apollo_combineResults()119
$combineResults_settings 119
$estimateDigits 119
$modelNames . 119
$pDigits . 119
$printClassical 119
$printPVal .119
$printT1 . 119
$sortByDate . 119
$tDigits . 119

apollo_conditionals() 115
syntax example . 116

apollo_control . 20

215

$HB . 20
$mixing . 20, 69
$nCores . 20, 69
$noDiagnostics 20, 88
$noValidation . 20
$panelData . 20
$seed . 20
$weights . 21
$workInLogs 20, 124, 145, 146
syntax example . 20

apollo_deltaMethod() 112
$deltaMethod_settings 112
$multPar1 . 112
$multPar2 . 112
$operation .112
$parName1 . 112
$parName2 . 112

syntax example . 113
apollo_detach() . 26

syntax example . 25
apollo_dft() .48

$dft_settings . 48
$altStart . 48
$alternatives 48
$attrScalings 48
$attrValues .48
$attrWeights . 48
$avail . 48
$choiceVars .48
$componentName 49
$procPars . 48
$rows .49

syntax example . 50
apollo_draws .69

$interDrawsType 69
$interNDraws . 70
$interNormDraws 70
$interUnifDraws 70
$intraDrawsType 69
$intraNDraws . 70
$intraNormDraws 70
$intraUnifDraws 70

Halton draws . 69, 70
mlhs draws . 70
pmc draws . 69
Sobol draws .70
Sobol-Faure-Tezuka draws70
Sobol-Owen draws 70
Sobol-Owen-Faure-Tezuka draws 70
syntax example . 70
user-generated draws 71

apollo_drugChoiceData
example application53, 90, 93, 122

apollo_el() . 51, 88
$el_settings . 51
$alternatives 51
$avail . 51
$choiceVars .51
$componentName 51
$rows .51
$scales . 51
$V . 51

syntax example . 53
apollo_estimate() . 29

$estimate_settings 29
$bootstrapSE31, 147
$bootstrapSeed 31
$constraints . 30
$estimationRoutine 29
$hessianRoutine 30
$maxIterations 30, 146
$numDeriv_settings 31
$printLevel .30
$scaling . 30, 147
$silent . 31
$writeIter . 30

syntax example . 32
apollo_firstRow() 77, 116

syntax example77, 116, 118
apollo_fitsTest() .111

$fitsTest_settings 111
$subsamples . 111

syntax example . 111
apollo_fixed .22

216

syntax example . 23
apollo_HB . 95

$constraintNorm 97
$fixedA . 97
$fixedD . 97
$gINFOSKIP . 96
$gNCREP . 96
$gNEREP . 96
$hbDist . 95
excluded arguments 97
syntax example . 96

apollo_initialise() 18
syntax example . 20

apollo_lc() . 79
$lc_settings . 79
$classProb . 79
$inClassProb . 79

P . 79
P in hybrid .85
syntax example . 78

apollo_lcConditionals()117
limitations . 117
syntax example . 118

apollo_lcEM() . 131
$lcEM_settings 132
$EMmaxIterations 132, 136
$postEM . 132, 136
$silent . 132, 136
$stoppingCriterion 132, 136

syntax example134, 135, 137
apollo_lcPars() . 76

lcPars .77
$beta .77
$pi_values 77, 79

syntax example . 77
apollo_lcUnconditionals() 114

syntax example . 118
apollo_llCalc() . 103

syntax example . 103
apollo_loadModel() 103
apollo_lrTest() . 104

syntax example . 104

apollo_mdcev() . 57
$mdcev_settings 57
$V . 58
$alpha . 58
$alternatives 57
$avail . 57
$budget . 58
$componentName 58
$continuousChoice 57
$cost .58
$gamma . 58
$minConsumption 58
$outside . 58
$rows .58
$sigma . 58

syntax example . 59
apollo_mdcnev() . 60

$mdcnev_settings 60
$mdcnevNests . 60
$mdcnevStructure60

syntax example . 62
apollo_mixEM() . 136

$mixEM_settings 136
$transforms . 136

syntax example . 138
apollo_mnl() .27

$mnl_settings . 27
$alternatives 27
$avail . 27
$choiceVar . 27
$componentName 27
$V . 27
rows . 27

syntax example . . 25, 72, 77, 81, 87, 90,
93, 139

apollo_modeChoiceData
example application . 25, 40, 43, 45, 50,

87, 96, 102, 108, 110, 111
apollo_modelOutput() 33

$modelOutput_settings 34
$printChange . 35
$printClassical 34

217

$printCorr . 35
$printCovar .34
$printDataReport34
$printFixed .34
$printFunctions 35
$printModelStructure 34
$printOutliers 35
$printPVal . 34
$printT1 . 34

syntax example . 36
apollo_nl() . 40

$nl_settings . 40
$alternatives 40
$avail . 40
$choiceVar . 40
$nlNests . 40
$nlStructure . 40
$V . 40

syntax example . 40
apollo_normalDensity() 56

$normalDensity_settings 56
$componentName 56
$mu . 56
$outcomeNormal 56
$sigma . 56
$xNormal . 56
$rows . 56

syntax example . 94
apollo_ol() . 54

$ol_settings . 54
$coding . 54
$componentName 54
$outcomeOrdered 54
$rows . 54, 92
$tau . 54
$V . 54

syntax example . 93
apollo_op() . 55

$op_settings . 55
$coding . 55
$componentName 55
$outcomeOrdered 55

$rows .55
$tau . 55
$V . 55

apollo_outOfSample() 127
$outOfSample_settings 128
$nRep .128
$samples . 128
$validationSize 128

syntax example . 129
apollo_panelProd() 28, 142

bayesian estimation 97
syntax example . 25

apollo_prediction() 105
$prediction_settings 106
$modelComponent 106
$nRep .106
$runs .106

output . 107
prediction variability 107
syntax example . 108

apollo_prepareProb() 28
syntax example . 25

apollo_probabilities() 24
closure . 28
debugging . 122
functionality . 63
initialisation . 26
model definition .26
syntax example . 25

apollo_randCoeff() .71
syntax example . 71

apollo_readBeta() . 22
inputModelName . 23
overwriteFixed . 23
syntax example . 24

apollo_saveOutput() 33
$saveOutput_settings 34
$saveCorr . 35
$saveCov . 35
$saveEst . 35
$saveModelObject 35
$writeF12 . 35

218

bayesian estimation 97
apollo_searchStart() 125, 145

$searchStart_settings 126
$apolloBetaMax 126
$apolloBetaMin 126
$bfgsIter . 126
$dTest . 126
$gTest . 126
$llTest . 126
$maxStages .126
$nCandidates 126
$smartStart . 126

syntax example . 127
apollo_sharesTest() 109

$sharesTest_settings 109
$alternatives 109
$choiceVar .109
$modelComponent 110
$newAltsOnly 110
$newAlts . 110
$subsamples . 110

syntax example . 110
apollo_speedTest() .83

$speedTest_settings 83
$nCoresTry . 83
$nDrawsTry . 83

$nRep .83
syntax example . 84

apollo_swissRouteChoiceData
example application . . . 72, 78, 116, 118,

127, 129, 131, 134, 137
apollo_timeUseData

example application 59, 61, 62
apollo_unconditionals()113

syntax example . 116
apollo_validateInputs()23

syntax example . 24
apollo_weighting() 21, 29
functionality

estimate . 63
output .63
raw . 77
validate . 63
zero_LL . 63

model . 32
$estimates . 32
$robvarcov . 33
$varcov . 33
syntax example . 32

P . 26–28
joint models . 85
syntax example . 25

219

	1 Introduction
	2 Installing Apollo, loading the libraries and running the code
	3 Data format and datasets used for examples
	3.1 RP-SP mode choice dataset: apollo_modeChoiceData
	3.2 SP route choice dataset: apollo_swissRouteChoiceData
	3.3 Health attitudes SP: apollo_drugChoiceData
	3.4 Time use data: apollo_timeUseData

	4 General code structure and components: illustration for MNL
	4.1 Initialising the code
	4.2 Reading and processing the data
	4.3 Model parameters
	4.4 Validation and preparing user inputs
	4.5 Likelihood component: the apollo_probabilities function
	4.5.1 Initialisation
	4.5.2 Model definition
	4.5.3 Function output

	4.6 Estimation
	4.7 Reporting and saving results

	5 Other model components
	5.1 Other RUM-consistent discrete choice models
	5.1.1 Nested Logit
	5.1.2 Cross-nested Logit

	5.2 Non-RUM decision rules for discrete choice
	5.2.1 Random regret minimisation (RRM)
	5.2.2 Decision field theory (DFT)

	5.3 Models for ranking, rating and continuous dependent variables
	5.3.1 Exploded Logit
	5.3.2 Ordered Logit and Ordered Probit
	5.3.3 Normally distributed continuous variables

	5.4 Discrete-continuous models
	5.4.1 Multiple Discrete Continuous Extreme Value (MDCEV) model
	5.4.2 Multiple Discrete Continuous Nested Extreme Value (MDCNEV) model

	5.5 Adding new model types

	6 Incorporating random heterogeneity
	6.1 Continuous random coefficients
	6.1.1 Introduction
	6.1.2 Example model specification
	6.1.3 Implementation
	6.1.4 Estimation
	6.1.5 Error components

	6.2 Discrete mixtures and Latent Class
	6.3 Combining Latent Class with continuous random heterogeneity
	6.4 Multi-threading capabilities

	7 Joint estimation of multiple model components
	7.1 Joint estimation on RP and SP data
	7.2 Joint best-worst model
	7.3 Hybrid choice model

	8 Bayesian estimation
	9 Pre and post-estimation capabilities
	9.1 Pre-estimation analysis of choices
	9.2 Reading in a previously saved model object
	9.3 Calculating model fit for given parameter values
	9.4 Likelihood ratio tests against other models
	9.5 Ben-Akiva & Swait test
	9.6 Model predictions
	9.7 Market share recovery for subgroups of data
	9.8 Comparison of model fit across subgroups of data
	9.9 Functions of model parameters and associated standard errors
	9.10 Unconditionals for random parameters
	9.10.1 Continuous random heterogeneity
	9.10.2 Latent class

	9.11 Conditionals for random coefficients
	9.11.1 Continuous random coefficients
	9.11.2 Latent class

	9.12 Summary of results for multiple models

	10 Debugging
	11 Extensions
	11.1 Starting value search
	11.2 Out of sample fit (Cross validation)
	11.3 Bootstrap estimation
	11.4 Expectation-maximisation (EM) algorithm
	11.4.1 EM algorithm for LC model
	11.4.2 MMNL model with full covariance matrix for random coefficients

	11.5 Iterative coding of utilities for large choice sets

	12 Frequently asked questions
	12.1 General
	12.2 Installation and updating of Apollo
	12.3 Data
	12.4 Model specification
	12.5 Errors and failures during estimation
	12.6 Model results

	A Apollo versions: timeline, changes and backwards compatibility
	B Data dictionaries
	C Index of example files
	D Overview of functions, lists and elements
	E Detailed description of model object
	Bibliography
	Index: Apollo syntax

