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1 Introduction

Choice modelling techniques have been used across di�erent disciplines for over four decades
(see McFadden 2000 for a retrospective and Hess and Daly 2014 for recent contributions and
applications across �elds). For the majority of that time, the number of users of especially the
most advanced models was rather small, and similarly, a small number of software packages was
used by this community. In the last two decades, the pool of users of choice models has expanded
dramatically, in terms of their number as well as the breadth of disciplines covered. At the
same time, we have seen the development of new modelling approaches, and gains in computer
performance as well as software availability have given an ever broader group of users access to
very advanced models.

These developments have also seen a certain fragmentation of the community in terms
of software, which in part runs along discipline lines1. Notwithstanding the most advanced
users who develop their own code for often their own models, there is �rst a split between
the users of commercial software and those using freeware tools. The former are generally
computationally more powerful but may have more limitations in terms of available model
structures or the possibility for customisation. On the other hand, the latter may have limitations
in terms of performance and user friendliness but may bene�t from more regular developments to
accommodate new model structures.

A further key di�erentiation between packages is the link between user inputs and interface
and the actual underlying methodology. Many existing packages, both freeware and commercial,
are black box tools where the user has little or no knowledge of what goes on �under the hood�.
While this has made advanced models accessible to a broader group of users, a disconnect between
theory and software not only increases the risk of misinterpretations and misspeci�cations, but
can also mistakenly give the impression that choice models are �easy tools� to use. On the other
hand, software that relies on users to code all components from scratch arguably imposes too high
a bar in terms of access.

Software also almost exclusively allows the use of only either classical estimation techniques or
Bayesian techniques. This fragmentation again runs largely in parallel with discipline boundaries
and has only served to further contribute to the lack of interaction/dialogue between the classical
and Bayesian communities.

A �nal di�erence arises in terms of software environment. While commercial software will
usually provide a custom user interface, freeware options will in general (though not exclusively)
rely on existing statistical or econometric software and be made available as packages within these.
The latter at times means that freeware packages are not really free to use (if the host software
is not), while there are also cases of software being accessible only in either Windows or Linux,
not both.

The above points served in large part as the motivation for the development of Apollo. Our
aims were:

Free access: Apollo is a completely free package which does not rely on commercial statistical

1We intentionally do not refer to speci�c packages, so as not to risk any misrepresentations but also given the
growing number of freeware tools, some of which we might not be aware of.
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software as a host environment.
Big community: Apollo relies on R (R Core Team, 2017), which is very widely used across
disciplines and works well across di�erent operating systems.
Transparent, yet accessible: Apollo is neither a blackbox nor does it require expert
econometric skills. The user can see as much or as little detail of the underlying methodology
as desired, but the link between inputs and outputs remains.
Ease of use: Apollo combines easy to use R functions with new intuitive functions without
unnecessary jargon or complexity.
Modular nature: Apollo use the same code structure independently of whether the simplest
multinomial logit model is to be estimated, or a complex structure using random coe�cients
and combining multiple model components.
Fully customisable: Apollo provides functions for many well known models but the user is
able to add new structures and still make use of the overall code framework. This for example
extends to coding expectation-maximisation routines.
Discrete and continuous: Apollo incorporates functions not just for commonly used discrete
choice models but also for a family of models that looks jointly at discrete and continuous
choices.
Novel structures: Apollo goes beyond standard choice models by incorporating the ability
to estimate Decision Field Theory (DFT) models, a popular accumulator model from
mathematical psychology.
Classical and Bayesian: Apollo does not restrict the user to either classical or Bayesian
estimation but easily allows changing from one to the other.
Easy multi-threading: Apollo allows users to split the computational work across multiple
processors without making changes to the model code.
Not limited to estimation: Apollo provides a number of pre and post-estimation tools,
including diagnostics as well as prediction/forecasting capabilities and posterior analysis of
model estimates.

While Apollo is easy to use, we also remain of the opinion that users of choice modelling software
should understand the actual process that happens during estimation. For this reason, the user
needs to explicitly include or exclude calls to speci�c functions that are model and dataset speci�c.
For example, in the case of repeated choice data, the user needs to include a call to a function
that takes the product across choices for the same person (apollo_panelProd). Or in the case
of a mixed logit model, the user needs to include a call to a function that averages across draws
(apollo_avgInterDraws and/or apollo_avgIntraDraws). If calls to these functions are missing
when needed, or if a user makes a call to a function that should not be used in the speci�c model,
the code will fail, and provide the user with feedback about why this happened. This is in our
view much better than the software permitting users to make mistakes and �xing them behind
the scenes.

Users of Apollo are asked to acknowledge the use of the software by citing the academic paper
(Hess, S. & Palma, D. (2019), Apollo: a �exible, powerful and customisable freeware package for
choice model estimation and application, Journal of Choice Modelling) and the manual for the
version used in their work (e.g. Hess, S. & Palma, D. (2019), Apollo version 0.0.7, user manual,
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www.ApolloChoiceModelling.com).
Apollo is the culmination of many years of development of individual choice modelling routines,

starting with code developed by Hess while at Imperial College (cf. Hess, 2005) using Ox (Doornik,
2001). This code was gradually transitioned to R at the University of Leeds, with substantial
further developments once Palma joined the team in Leeds, bringing with him ideas developed at
Ponti�cia Universidad Católica de Chile (cf. Palma, 2016). No code is an island, and we have been
inspired especially by ALogit and Biogeme, and Apollo mirrors at least some of their features.

This manual presents an overview of the capabilities of the Apollo package and serves as a
user manual. It is accompanied online2 by numerous example �les (some of which are used in this
manual) and a number of free to use datasets. In line with our earlier point about other software,
this manual does not include any comparisons with other packages, in terms of capabilities or
speed. The code has been widely tested to ensure accuracy. In our view, any speed comparisons
o�er little practical bene�t. For simple models, there is a clear advantage for highly specialised
code, while, for complex models, any benchmarking is impacted substantially by the speci�c
implementation and degree of optimisation used.

In the remainder of this manual, we do not provide details on common R functions and syntax
used in the code, or how to run R code, and the reader is instead referred to R Core Team (2017).
For the syntax shown in this manual, it is just worth noting that in R, a line starting with one
or more # characters is a comment. We tend to use a single # for optional lines that a user
can comment in and out, and ### for actual comments. In addition, two other points are worth
raising. In complex models, the R syntax �le for Apollo can become quite large, and a user may
wish to split this into separate �les, e.g. one for loading and processing the data, one for the
actual model de�nition, etc, and then have a master �le which calls the individual �les (using
source). Secondly, for the prede�ned functions, the order of arguments passed to the function
should be kept in the order speci�ed in this manual3.

Another point to raise concerns the speci�c naming conventions we have adopted for functions
and inputs to functions. All functions within the code start with the pre�x apollo_. This is
then followed by the �name� of the actual function in a single word, where any new part of
the name starts with a capital letter, for example apollo_modelOutput. The pre�x apollo_

is also used for four key non-function objects in the code, namely the user de�ned settings
apollo_control, apollo_HB and apollo_draws, the list of parameters apollo_beta and �xed
parameters apollo_fixed, and the code generated combined inputs variable apollo_inputs. The
functions in Apollo take numerous inputs and for ease of programming, these are often combined
into a list object. The naming convention used for these is to have the name of the function
(without the apollo_ pre�x) followed by _settings, for example in modelOutput_settings.
Finally, individual variables/settings do not have a pre�x and again use the convention of

2www.ApolloChoiceModelling.com
3Unless a user explicitly prefaces each argument with the name used in the function. For example, if a function

is de�ned to take two inputs, namely dependent and explanatory, e.g. model_prob(dependent,explanatory),
and the user wants to use choice and utility as the inputs, then the function can be called as
model_prob(choice,utility) but not as model_prob(utility,choice). The latter change in order is only possible
if the function is called explicitly as model_prob(explanatory=utility,dependent=choice), which is the same as
model_prob(dependent=choice,explanatory=utility).

www.ApolloChoiceModelling.com
www.ApolloChoiceModelling.com
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capitalising the �rst letter of any new word except for the start, for example in printDiagnostics.
Before we proceed, a brief explanation is needed as to our choice of the name Apollo. Several

existing packages refer to speci�c models in their name (e.g. ALogit, NLogit) which is not
applicable in our case given the wider set of models we cover. We failed miserably in our e�orts to
come up with an imaginative acronym like Biogeme and so went back to Greek mythology. The
obvious choice would have been Cassandra, with her gift of prophecy and the curse that nobody
listened to her (a bit like choice modellers trying to sell their ideas to policy makers). Alas, the
name has already been used for a large database package, so we resorted to Apollo, the Greek
god of prophecy who gave this gift to Cassandra in the �rst place.

The remainder of this manual is organised as follows. The following section talks about
installation before Section 3 introduce a number of datasets used throughout the manual. Section
4 provides an in-depth introduction to the code structure, using the example of a simple
Multinomial Logit model. This is followed in Section 5 by an overview of other available model
components, and a description of how the user can add his/her own models. Section 6 covers
random heterogeneity, both discrete and continuous while Section 7 discusses joint estimation
of multiple model components, with a focus on hybrid choice models. Bayesian estimation is
covered in Section 8 with (mainly) post-estimation capabilities discussed in Section 9. Finally, a
few extensions are discussed in Section 10. A number of appendices are also included. Appendix
A summarises changes across di�erent versions of Apollo. Appendix B contains data dictionaries,
Appendix C a list of the example �les and Appendix D an index of functions and variables in
Apollo.
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2 Installing Apollo and loading the libraries

Apollo runs in R, with a minimum R version of 3.1.0. Apollo can be installed in two ways. If
an internet connection is available, the easiest way to install it is to type the following command
into the R console. This will also install all dependencies, i.e. other routines used by the Apollo
package4.

install.packages("apollo")

The second way is to install it from a �le. A �le containing the source code can be obtained
at www.ApolloChoiceModelling.com. Then, the following command must be typed into the R

console.

install.packages("C : \ . . . \apollo_v0.0.7.tar.gz", repos = NULL, type = "source")

where C : \ . . . \apollo_v0.0.7.tar.gz must be replaced by the correct path to the �le in the
user's computer, using the version that was downloaded. This will not automatically install
dependencies.

The installation of the package does not need to be repeated every time R is started nor every
time a model is to be estimated. Instead, it only need to be done once (unless R itself is updated,
then the installation must be repeated).

Every time users want to estimate a model, they should load Apollo into memory. This can
be achieved by simply running the following line of code in R, or by including it in the source �le
of each model, prior to running any Apollo functions.

library(apollo)

Users are encouraged to check for updated versions of the package every few months. Updates,
when available, can be acquired by simply re-installing the package. Installation from CRAN will
install the latest release. Previous releases will be available from the software website, where users
also have access to versions with new features that are under development prior to a full release.

4For installation on macOS, users should install from binaries, rather than source.



Apollo: user manual for version 0.0.7 11

3 Data format and datasets used for examples

Apollo makes use of a format where all relevant information for a given observation is stored
in the same row. Using a simple discrete choice context, this would imply that the data for
all alternatives is included in the same row, rather than one row per alternative. Some choice
modellers refer to this as the wide format, as opposed to the long format, which would have one
row per alternative. This terminology is however not very helpful as, in the context of repeated
measurements data, the term wide refers to a format where all measurements for the same person
are included in one line. In the one row per observation format in a choice modelling context,
there will still be multiple rows for di�erent choices for the same person.

This section presents a number of datasets used throughout the manual and in the online
examples. All datesets are saved as comma separated (csv) �les, with details on variable names
are provided in Appendix B.

3.1 RP-SP mode choice dataset: apollo_modeChoiceData.csv

Our �rst dataset is a synthetic dataset looking at mode choice for 500 travellers. For each
individual, the data contains two revealed preference (RP) inter-city trips, where the possible
modes were car, bus, air and rail, and where each individual had at least two of these four modes
available to them. The journey options were described on the basis of access time (except for
car), travel time and cost, with times in minutes, and costs in £. The data then also contains
14 stated preference (SP) tasks per person, using the same alternatives as those available on the
RP journey for that person, but with an additional categorical quality of service attribute added
in for air and rail, taking three levels, namely no frills, wi� available, or food available. For each
individual, the dataset additionally contains information on gender, whether the journey was a
business trip or not, and the individual's income.

3.2 SP route choice dataset: apollo_swissRouteChoiceData.csv

Our second dataset comes from an actual SP survey of public transport route choice conducted in
Switzerland (Axhausen et al., 2008). A set of 388 people were faced with 9 choices each between
two public transport routes, both using train (leading to 3, 492 observations in the data). The
two alternatives were described on the basis of travel time, travel cost, headway (time between
subsequent trains/busses) and the number of interchanges. For each individual, the dataset
additionally contains information on income, car availability in the household, and whether the
journey was made for commuting, shopping, business or leisure.

3.3 Health attitudes SP: apollo_drugChoiceData.csv

Our third dataset is a synthetic dataset looking at drug choices for the treatment of headaches for
1, 000 individuals. For each person, the data contains 10 SP tasks, each giving a choice between
four alternatives, the �rst two being products by recognised drug companies while the �nal two
are generic products. In each choice task, a full ranking of the four alternatives is given. The
drugs are described in terms of brand (two recognised brands and three generic brands), country
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of origin (six countries), drug features (three types of features), risk of side e�ects and price.
The possible levels for the attributes di�er between the �rst two (branded) and last two (generic)
alternatives. For each individual, the dataset additionally contains answers to four attitudinal
questions as well as information on whether an individual is a regular user, their education and
their age.

3.4 Time use data: apollo_timeUseData.csv

Our fourth dataset comes from a revealed preferences survey on time use conducted in the UK
(Calastri et al., 2019). A set of 447 individuals completed a digital activity log for up to 14 days,
providing 2,826 days of data (�rst day discarded for each person). For each day, the amount of time
spent in each of twelve activities is recorded, as well as some of the individual's characteristics,
the weather during the day, and information about land use at the individual's home location.
The activities considered were dropping-o� or picking-up, working, going to school, shopping,
private business, getting petrol, social or leisure activities, vacation, doing exercise, being at home,
travelling, and a last activity grouping the time allocated to other activities by the individual.
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4 General code structure and components: illustration for MNL

The structure of an Apollo model �le varies across speci�cations, but a general overview is shown
in Figure 1.

In this section, we provide an introduction to the general capabilities of the Apollo package by
using the example of a Multinomial Logit (MNL) model (McFadden, 1974) on the simple mode
choice stated preference survey introduced in Section 3.1, where we use the SP part of this data,
i.e. 14 choices each for 500 individuals. This example is available in the �le Apollo_example_3.r
and uses a very detailed speci�cation of the utility function. More barebones examples are also
available in Apollo_example_1.r and Apollo_example_2.r, which are models without any socio-
demographics, estimated on the RP and SP data, respectively.

4.1 Initialising the code

The �rst step in every use of Apollo is to initialise the code. These steps are illustrated in Figure
2. In an optional step, we clear the memory/workspace by using rm(list = ls()), before loading
the Apollo library. This is followed by calling the apollo_initialise function, which `detaches'
variables5 and makes sure that output is directed to the console rather than a �le. This function
is called without any arguments and does not return any output variables, i.e.:

apollo_initialise()

The user next sets a number of core controls, where in our case, we only set the name of the model
(where any output �les will use this name too), provide a brief description of the model (for use in
the output) and indicate the name of the column in the data which contains the identi�er variable
for individual decision makers.

Only this �nal setting in Figure 2, i.e. setting the individual ID, is a requirement without
which the code will not run. For any other settings, the code will use default values when not
provided by the user, as illustrated in Figure 6. These other settings include:

mixing: A boolean variable which needs to be set to TRUE when the model uses continuous
random coe�cients, as discussed in Section 6.1 (default is set to FALSE).

nCores: An integer setting the number of cores used during estimation discussed, as discussed
in Section 6.4 (default is set to 1).

workInLogs: A boolean variable, which, when set to TRUE, means that the logs of probabilities
are used when processing probabilities inside apollo_probabilities. This can avoid
numerical issues with complex models and datasets where there are large numbers of
observations per individual. This is only really useful with repeated choice, and slows down
estimation (default is set to FALSE).

seed: An integer setting the seed used for any random number generation (default is 13).
HB: A boolean variable which needs to be set to TRUE for using Bayesian estimation, as
discussed in Section 8 (default is FALSE).

5In R, a user can `attach' an object, which means that individual components in it can be called by name.
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Initialisation
• Clear memory (optional but recommended)
• Load Apollo library
• Set core controls

Data
• Load data into database object
• Optionally add any additional variables or apply transformations as required
• Optionally run pre-estimation analysis of the data

Model parameters
• Define model parameters 
• Optionally indicate any parameters that are to be kept fixed
• For continuous mixture models, define apollo_draws settings and create 

apollo_randCoeff function
• For latent class models, define apollo_lcPars function

Run apollo_validateInputs function

Model definition
• Define apollo_probabilities function

• Create likelihood functions for individual model components
• Combine into overall model likelihood if multiple components exist
• Depending on the model, average over draws, latent classes and take 

products across choices
• Return output with one likelihood value per individual in estimation

Estimation and model output
• Run apollo_estimate function
• Run apollo_modelOutput for on screen output
• Run apollo_saveOutput for on output to file

Run optional post estimation procedures

Figure 1: General structure of an Apollo model �le
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rm( l i s t = l s ( ) )

l i b r a r y ( apo l l o )

a p o l l o_ i n i t i a l i s e ( )

apo l l o_cont ro l = l i s t (
modelName ="Apollo_example_3 " ,
modelDescr ="MNL model with soc io=demographics on mode cho i c e SP data " ,
indivID ="ID"

)

Figure 2: Code initialisation

noValidation A boolean variable, which, when set to TRUE, means that no validation checks
are performed (default is FALSE).

noDiagnostics A boolean variable, which, when set to TRUE, means that no model diagnostics
are reported. This setting is provided primarily to avoid excessively verbose output with
complex models using many components (cf. Section 7) but will be set to FALSE (default)
for most models by most users.

weights: The name of a variable in the database containing weights for each observation, which
can then be used in estimation if also using the function apollo_weighting (default is for
weights to be missing).

4.2 Reading and processing the data

Figure 3 illustrates the process of loading the data, in this case from a csv �le, working with only
a subset of the data (in this case removing the RP observations) and creating additional variables
in the data (in this case a variable with the mean income in the data). In our example, we read
the data �le from the working directory, which we had set to be the same as the directory with
the model �le. Users may need to add the path of the �le depending on their local setup and �le
structure.

Three additional points need to be mentioned here. Firstly, the code is not limited to using
csv �les, and R allows the user to read in tab separated �les too, for example6. Secondly, some
applications may combine data from multiple �les. The user can either combine the data outside
of R or do so inside R using appropriate merging functions, but at the point of validating the
user inputs (Section 4.4), all data needs to be combined in a single R data.frame called database.
Thirdly, any new variables created by the user, such as mean income in our case, need to be
created in the database object rather than the global environment, and this needs to happen
prior to validating the user inputs.

4.3 Model parameters

In this simple model, we estimate alternative speci�c constants (ASCs), mode speci�c travel time
coe�cients, a cost and access time coe�cient and dummy coded coe�cients for the service quality
attribute. In addition, we interact the constants with gender, allow for di�erences in the time

6The reader is referred to R Core Team (2017).
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database = read . csv (" apollo_modeChoiceData . csv " , header=TRUE)

database = subset ( database , database$SP==1)

database$mean_income = mean( database$income )

Figure 3: Loading data, selecting a subset and creating an additional variable

and cost sensitivities for business travellers (generic across modes), and incorporate an income
elasticity on the cost sensitivity.

With the above, the utilities for the four modes in choice situation t for individual n are given
by:

Ucar,n,t = δcar

+ (βtt,car + βtt,business−shift · zbusiness,n) · xtt,car,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,car,n,t

+ εcar,n,t

Ubus,n,t = δbus + δbus,female−shift · zfemale,n
+ (βtt,bus + βtt,business−shift · zbusiness,n) · xtt,bus,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,bus,n,t

+ εbus,n,t

Uair,n,t = δair + δair,female−shift · zfemale,n
+ (βtt,air + βtt,business−shift · zbusiness,n) · xtt,air,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,air,n,t

+ βno frills · (xservice,air,n,t == 1) + βwifi · (xservice,air,n,t == 2) + βfood · (xservice,air,n,t == 3)

+ εair,n,t

Urail,n,t = δrail + δrail,female−shift · zfemale,n
+ (βtt,rail + βtt,business−shift · zbusiness,n) · xtt,rail,n,t

+ (βtc + βtc,business−shift · zbusiness,n) ·
(
zincome,n
zincome

)λincome
· xtc,rail,n,t

+ βno frills · (xservice,rail,n,t == 1) + βwifi · (xservice,rail,n,t == 2) + βfood · (xservice,rail,n,t == 3)

+ εrail,n,t,

(1)

where all parameters are estimated except for δcar and βno frills, which are both �xed to a value
of zero.

In the code, the user needs to de�ne the parameters and their starting values, and also indicate
whether any of the parameters are to be kept at their starting values. This process is illustrated
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in Figure 4. We �rst create an R object of the named vector type, called apollo_beta, with the
name and starting value for each parameter, including any that are later on �xed to their starting
values. In our case, we then keep two of these parameters, namely asc_car and b_no_frills,
�xed to their starting values by including their names in the character vector apollo_fixed,
where this vector is kept empty (apollo_fixed = c()) if all parameters are to be estimated.

apol lo_beta=c ( asc_car = 0 ,
asc_bus = 0 ,
asc_air = 0 ,
a s c_ra i l = 0 ,
asc_bus_shift_female = 0 ,
asc_air_shi f t_female = 0 ,
asc_ra i l_sh i f t_female = 0 ,
b_tt_car = 0 ,
b_tt_bus = 0 ,
b_tt_air = 0 ,
b_tt_rai l = 0 ,
b_tt_shi ft_business = 0 ,
b_acc = 0 ,
b_cost = 0 ,
b_cost_shi ft_business = 0 ,
cost_income_elast = 0 ,
b_no_fr i l l s = 0 ,
b_wifi = 0 ,
b_food = 0
)

apo l l o_f ixed = c (" asc_car " ," b_no_fr i l l s ")

Figure 4: Setting names and starting values for model parameters, and �xing some parameters
to their starting values

For complex models especially, it can sometimes be bene�cial to read in starting values from an
earlier model, albeit that users should be mindful that this can lead to problems with convergence
to the values of the old model. This process is made possible by the function apollo_readBeta,
which is called as:

apollo_beta = apollo_readBeta(apollo_beta,

apollo_fixed,

inputModelName,

overwriteFixed)

The function returns an updated version of apollo_beta. The �rst two arguments passed to the
function are already known to the reader, the remaining two are:

inputModelName: The name of a previously estimated model, given as a string.
overwriteFixed: A boolean variable indicating whether parameters that are not to be
estimated should have their starting values overwritten by the input �le (set to FALSE by
default).

To use apollo_readBeta, the outputs from the input model need to have been saved in the
same directory as the current model �le. We illustrate the use of this function in Figure 5, where
we read in parameters from the earlier RP model (Apollo_example_1.r) which did not include
the socio-demographic e�ects or the quality of service attribute, thus meaning that only values
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for the 9 estimated parameters were read in, with the �xed parameter asc_car kept to the value
from apollo_beta given the use of overwriteFixed=FALSE, where, with overwriteFixed=TRUE,
the value from the input �le would also be used for �xed parameters.

> apollo_beta=apollo_readBeta(apollo_beta,apollo_fixed,"Apollo_example_1",overwriteFixed=FALSE)

Out o f the 19 parameters in apollo_beta , 9 were updated with va lues from the input f i l e .
1 parameter in apol lo_beta was kept f i x ed at i t s s t a r t i n g value ra the r than being updated from the input

↪→ f i l e .

Figure 5: Using apollo_readBeta to load results from an earlier model as starting values

4.4 Validation and preparing user inputs

The �nal step in preparing the code and data for model estimation or application is to make a call
to apollo_validateInputs. The function runs a number of checks and produces a consolidated
list of model inputs. It is called as:

apollo_inputs=apollo_validateInputs()

This function takes no arguments but looks in the global environment for the various inputs
required for a model. This always includes the control settings apollo_control, the model
parameters apollo_beta, the vector with names of �xed parameters apollo_fixed and �nally
the data object database. If any of these objects are missing from the global environment, the
execution of apollo_validateInputs fails. The function also looks for a number of optional
objects, namely apollo_HB, which is used for Bayesian estimation (cf. Section 8), apollo_draws
and apollo_randCoeff, which are used for continuous random coe�cients (cf. Section 6.1), and
apollo_lcPars, which is used for latent class (cf. Section 6.2).

Before returning the list of model inputs, apollo_validateInputs runs a number of validation
tests on the apollo_control settings and the database. It then uses default values for any
missing settings, sorts the data by ID and adds an extra column called apollo_sequence

which is a running index of observations for each individual in the data. Finally, the code
also checks for the presence of multiple rows per individual in the data and accordingly sets
apollo_control$panelData to TRUE or FALSE7. The running of apollo_validateInputs is
illustrated in Figure 6. The list that is returned, apollo_inputs, contains the validated versions
of the various objects mentioned above, e.g. database.

4.5 Likelihood component: the apollo_probabilities function

The core part of the code is contained in the apollo_probabilities function, where we show
this function for our simple MNL model in Figure 7. An important distinction arises between
apollo_probabilities and other functions in Apollo. While the other functions we have
encountered are part of the package, apollo_probabilities needs to be de�ned by the user
as it is speci�c to the model to be estimated. The function itself is never called by the user, but

7In R, elements of a list such as apollo_control can be referred to via apollo_control$panelData.
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> apollo_inputs = apollo_validateInputs()
Miss ing s e t t i n g f o r mixing , s e t to d e f au l t o f FALSE
Miss ing s e t t i n g f o r nCores , s e t to d e f au l t o f 1
Miss ing s e t t i n g f o r workInLogs , s e t to d e f au l t o f FALSE
Miss ing s e t t i n g f o r seed , s e t to d e f au l t o f 13
Miss ing s e t t i n g f o r HB, s e t to d e f au l t o f FALSE
Severa l obs e rva t i on s per i nd i v i dua l detected based on the value o f ID .

Se t t ing panelData s e t to TRUE.
Al l checks on apo l l o_cont ro l completed .
Al l checks on data completed .

Figure 6: Running apollo_validateInputs

is used for example by the function for model estimation apollo_estimate discussed below. The
function returns probabilities, where the speci�c format depends on functionality, a point we
return to below.

This function takes three inputs, namely the vector of parameters apollo_beta, the list of
combined model inputs apollo_inputs, and the argument functionality, which takes a default
value for model estimation, but other values apply for example in prediction, as discussed in
Section 9.5. The value used depends on which function makes the call to apollo_probabilities.

In the following three subsections, we look at the individual components of the code shown in
Figure 7.

4.5.1 Initialisation

Any use of the apollo_probabilities function begins with a call to apollo_attach which
enables the user to then call individual elements within for example the database by name, e.g.
using female instead of database$female. This function is called as:

apollo_attach(apollo_beta,

apollo_inputs)

The function does not return an object as output and the user does not need to change the
arguments for this function. The call to this function is immediately followed by a command
instructing R to run the function apollo_detach once the code exits apollo_probabilities.
This ensures that this call is made even if there is an error that leads to a failure (and hence hard
exit) from apollo_probabilities. This call is made as:

on.exit(apollo_detach(apollo_beta,

apollo_inputs))

We next initialise a list (a �exible R object) called P which will contain the probabilities for
the model, where this is a requirement for any type of model used with the code.

4.5.2 Model de�nition

With εcar,n,t, εbus,n,t, εair,n,t and εrail,n,t in Equation 1 being distributed identically and
independently (iid) across individuals and choice scenarios following a type I extreme value



Apollo: user manual for version 0.0.7 20

apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io=demographics
asc_bus_value = asc_bus + asc_bus_shift_female * female
asc_air_value = asc_air + asc_air_shi f t_female * female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female * female
b_tt_car_value = b_tt_car + b_tt_shi ft_business * bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business * bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business * bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business * bus ine s s
b_cost_value = ( b_cost + b_cost_shi ft_business * bus ine s s ) * ( income / mean_income ) ^

↪→ cost_income_elast

### Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ( )
V[ [ ' car ' ] ] = asc_car + b_tt_car_value * time_car + b_cost_value * cost_car
V[ [ ' bus ' ] ] = asc_bus_value + b_tt_bus_value * time_bus + b_acc * access_bus + b_cost_value * cost_bus
V[ [ ' a i r ' ] ] = asc_air_value + b_tt_air_value * time_air + b_acc * acce s s_a i r + b_cost_value * cost_ai r

↪→ + b_no_fr i l l s * ( s e r v i c e_a i r == 1 ) + b_wifi * ( s e r v i c e_a i r == 2 ) + b_food * ( s e r v i c e_a i r
↪→ == 3 )

V[ [ ' r a i l ' ] ] = asc_rai l_value + b_tt_rail_value * t ime_ra i l + b_acc * a c c e s s_ra i l + b_cost_value *

↪→ c o s t_ra i l + b_no_fr i l l s * ( s e r v i c e_ r a i l == 1 ) + b_wifi * ( s e r v i c e_ r a i l == 2 ) + b_food * (
↪→ s e r v i c e_ r a i l == 3 )

### Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
V = V

)

### Compute p r o b a b i l i t i e s us ing MNL model
P [ [ 'model ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 7: The apollo_probabilities function: example for MNL model

distribution, we obtain an MNL model, with the probability for alternative i in choice task t
for person n given by:

Pi,n,t (β) =
zavail,i,n,t · eVi,n,t∑J
j=1 zavail,j,n,t · eVj,n,t

, (2)

where β is a vector combining all model parameters, Vj,n,t refers to the part of the utility
functions in Equation 1 that excludes the error term εj,n,t, and where zavail,j,n,t takes a value
of 1 if alternative j is available in choice set t for person n, and 0 otherwise.

In the central part of the apollo_probabilities function, the user de�nes the actual model,
where in our example, this is a simple MNL model. No limits on �exibility are imposed on the
user with the Apollo package. A number of prewritten functions for common models are made
available in the package, going beyond MNL, as discussed in Section 5. Additionally, the user can
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de�ne his/her own models, as discussed in Section 5.5. Finally, this part of the code can contain
either a single model, as shown here, or multiple individual model components, as discussed in
Section 7.

The apollo_mnl function is called via:

P[["model"]] = apollo_mnl(mnl_settings,

functionality)

The function returns probabilities for the model, where depending on functionality, this is
for the chosen alternative only or for all alternatives. The output of the function is saved in a
component of the list P where for single component models such as here, this element is called
P[[`model']]. The function takes as its core input a list called mnl_settings which has four
compulsory inputs and one optional input. We will now look at these in turn.

alternatives: A named vector containing the names of the alternatives as de�ned by the user,
and for each alternative, giving the value used in the dependent variable in the data. In our
case, these simply go from 1 to 4.

avail: A list containing one element per alternative, using the same names as in alternatives.
For each alternative, we de�ne the availability either through a vector of values of the same
length as the number of observations (i.e. a column from the data) or by a scalar of 1 if
an alternative is always available. A user can also set avail=1 which implies that all of the
alternatives are available for every choice observation in the data.

choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation. In our example, this column is simply called choice.

V: A list object containing one utility for each alternative, using the same names as in
alternatives, where any linear or non-linear speci�cation is possible. The contents of VT

are complex and are thus generally de�ned prior to calling the function, as in Figure 7. In our
case, we pre-compute the interactions with socio-demographic variables in the lines preceding
the de�nition of the actual utilities, creating for example the new parameter b_tt_car_value.
This helps keep the code organised, makes it easier to add additional interactions and also
avoids unnecessary calculations. The latter point can be understood by noting that in our
example, the impact of income and purpose on the cost coe�cient is calculated just once and
then used in each of the four utilities, rather than being calculated four times.

rows: This is an optional argument which is missing by default. It allows the user to specify a
vector called rows of the same length as the number of rows in the data. This vector needs to
use logical statements to identify which rows in the data are to be used for this model. For
any observations in the data where the entry in rows is set to FALSE, the probability for the
model will be set to 1. This means that this observation does not contribute to the calculation
of the likelihood and hence estimation of the model parameters. It is useful for example in
the case of hybrid choice models, a point we return to in Section 7. When omitted from the
call to apollo_mnl, all rows are used, as in our example in Figure 7.

In the code example, we actually create the utilities V outside mnl_settings �rst just for ease
of coding, but they can similarly be created directly inside the list. What matters is that they
are then copied into a component called V inside mnl_settings.
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4.5.3 Function output

The �nal component of the apollo_probabilities function prepares the output of the function.
This performs further processing of the P list, which needs to include an element called model,
where, in our example, this is the only element in P. The speci�c functions to be called in this
part of the code depend on the data and model, where once again, the actual inputs to these
functions are not to be changed by the user.

In our speci�c example, the only additional manipulation of the raw probabilities produced
by apollo_mnl is a call to apollo_panelProd which multiplies the probabilities across individual
choice observations for the same individual, thus recognising the repeated choice nature of our
data. This function is only to be used in the presence of multiple observations per individual.
When estimating a model, the code computes the probability for the chosen alternative, say j∗n,t
in choice task t for person n, i.e. Pj∗n,t , using Equation 2. The contribution by person n to the
likelihood function for person n, with a given value for the vector of model parameters β, is then
given by:

Ln (β) =

Tn∏
t=1

Pj∗n,t , (3)

where Tn is the number of separate choice situations for person n. This function is called as:

P = apollo_panelProd(P,

apollo_inputs,

functionality)

All arguments of this function have been described already. When called in model prediction
(cf. Section 9.5), the multiplication across choices is omitted, i.e. the function returns an
unmodi�ed version of P, with one row per observation.

Independent of the model speci�cation, the function apollo_probabilities always ends with
the same two commands. First is apollo_prepareProb which prepares the output of the function
depending on functionality, e.g. with di�erent output for estimation and prediction. This is
called as:

P = apollo_prepareProb(P,

apollo_inputs,

functionality)

This is followed by

return(P)

which ensures that P is returned as the output of apollo_probabilities.
We earlier mentioned the possible use of weights by including the setting weights in

apollo_control. Weights are only used in estimation, and if the user wants to use weights,
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then in addition to including the setting in apollo_control, the function apollo_weighting

needs to be called prior to apollo_prepareProb. This is called as:

P = apollo_weighting(P,

apollo_inputs,

functionality)

We illustrate the use of this function in the EM algorithm discussions in Section 10.4.

4.6 Estimation

Now that we have de�ned our model, we can run the model estimation by calling the function
apollo_estimate and saving the output from it in an object called model. This function uses
the maxLik package (Henningsen and Toomet, 2011) for classical estimation, where Bayesian
estimation is discussed in Section 8. In its simplest form, the function is called via:

model = apollo_estimate(apollo_beta,

apollo_fixed,

apollo_probabilities,

apollo_inputs)

where we have already covered all four arguments. The function may also be called with an
additional argument, namely estimate_settings, i.e.:

model = apollo_estimate(apollo_beta,

apollo_fixed,

apollo_probabilities,

apollo_inputs,

estimate_settings)

The additional input, i.e. estimate_settings, is a list which contains a number of settings for
estimation. None of these settings is compulsory and default settings will be used for any omitted
settings, or indeed all settings when calling apollo_estimate without the estimate_settings

argument. The possible settings to include in this list are:

estimationRoutine: A character object which can take the values BFGS (for the Broyden-
Fletcher-Goldfarb-Shanno algorithm), BHHH (for the Berndt-Hall-Hall-Hausman algorithm)
or NR (for the Newton-Raphson algorithm), where, the speci�c syntax is for example
estimationRoutine="BFGS" (default is set to BFGS).

maxIterations: An integer setting a maximum on the number of iterations (default is set to
200).
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writeIter: A boolean variable, which, when set to TRUE, means that the values of
parameters at each iteration are saved into a �le in the working directory, saved as
modelName_iterations.csv where modelName is as de�ned in apollo_control. This is only
possible when using BFGS (default is set to TRUE).

hessianRoutine: A character variable indicating what routine to use for calculating the �nal
Hessian. Possible values are numDeriv for the numDeriv package (Gilbert and Varadhan,
2016), maxLik for the same package as used in estimation, and none for no covariance
matrix calculation. We have generally found that numDeriv is more reliable than maxLik

for computing the covariance matrix, but its use may lead to issues with complex mixture
models. If, when using numDeriv, this fails, the code reverts to using maxLik (default is set
to numDeriv).

printLevel: A numeric variable which can take levels from 0 to 3 and controls the level of
detail printed out during estimation, with higher levels meaning more detail (default is set to
3).

silent: A boolean variable, which, when set to TRUE, means that no information is printed
to the screen during estimation (default is set to FALSE).

constraints: A list of constraints to be applied in estimation. This is only possible with BFGS

and uses the coding approach in maxLik (Henningsen and Toomet, 2011).
scaling: A named vector of scalings to be applied to individual parameters during estimation.
This can help estimation if the scale of individual parameters at convergence is very di�erent.
In classical estimation, the user can specify scales for individual model parameters. For
example, if the unscaled speci�cation involves a component βk xk in the utility function, and
if the user wishes to apply a scale of sβk , the starting value will be automatically adjusted to
β∗k = 1

sβk
xk, the utility component will be adjusted to sβkβ

∗
k xk and the maximum likelihood

estimation will optimise the value of β∗k. The �nal model estimates will be translated to
the original scale, i.e. returning estimates for βk

8. The aim of this process is to have the
parameters that are actually used in model estimation, i.e. β∗k to be of a similar scale. An
example of this is given for the MDCNEV model in Section 5.4.2. For Bayesian estimation,
the scales are applied to the posterior parameter chains.

Figure 8 illustrates what happens when running apollo_estimate on our simple MNL model.
The model �rst checks the model speci�cation used inside apollo_probabilities and reports
some basic diagnostics. These validation and diagnostic steps are skipped if the user has set
a value of TRUE for noValidation or noDiagnostics, respectively, in apollo_control. For
MNL, the checks include for example ensuring that no unavailable alternatives are chosen. This
is followed by the main estimation process and �nally the calculation of the Hessian. Prior to
that step, which can take a long time in complex models (and may fail), the code also prints out
the �nal estimates.

8When using scaling in Bayesian estimation in Apollo, not all estimates are returned to their original scale after
estimation. Indeed, the scaling is applied to the parameter chains directly, and as such producing scaled values for
the underlying Normals is not convenient. We thus report the scaled outputs only for the �xed parameters, the
random parameters after transformation to the actual distributions used, and the posterior means.
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model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Test ing p r obab i l i t y func t i on ( apo l l o_p r obab i l i t i e s )

Overview o f cho i c e s f o r MNL model component :
car bus a i r r a i l

Times a va i l a b l e 5446.00 6314.00 5264.00 6118.00
Times chosen 1946.00 358.00 1522.00 3174.00
Percentage chosen o v e r a l l 27 .80 5 .11 21 .74 45 .34
Percentage chosen when ava i l a b l e 35 .73 5 .67 28 .91 51 .88

Sta r t i ng main es t imat ion
I n i t i a l func t i on value : =6413.433
I n i t i a l g rad i ent value :

asc_bus asc_air a s c_ra i l asc_bus_shift_female
=471.8336 =405.7411 906.9119 =217.4302

asc_air_shi f t_female asc_ra i l_sh i f t_female b_tt_car b_tt_bus
=170.4289 454.6112 =19956.9923 =174060.3443
b_tt_air b_tt_rai l b_tt_shi ft_business b_access

=25629.1953 134032.5302 =130444.4796 =14953.5089
b_cost b_cost_shi ft_business cost_income_elast b_wifi

=4769.1384 17472.3701 =360.0784 507.5689
b_food

120.8984
i n i t i a l va lue 6413.432774
i t e r 2 value 5891.018325
i t e r 3 value 5752.822505
. . .
i t e r 26 value 4830.944739
f i n a l value 4830.944739
converged

Estimated va lues :
[ , 1 ]

asc_car 0 .0000
asc_bus 0.2864
asc_air =0.9034
a s c_ra i l =2.0926
asc_bus_shift_female 0 .3402
asc_air_shi f t_female 0 .2682
asc_ra i l_sh i f t_female 0 .1896
b_tt_car =0.0131
b_tt_bus =0.0213
b_tt_air =0.0166
b_tt_rai l =0.0071
b_tt_shi ft_business =0.0062
b_access =0.0212
b_cost =0.0762
b_cost_shi ft_business 0 .0334
cost_income_elast =0.6138
b_no_fr i l l s 0 .0000
b_wifi 1 .0267
b_food 0.4221

Computing covar iance matrix us ing numDeriv package .
( t h i s may take a whi le )
0% . . . . 2 5% . . . . 5 0% . . . . 7 5% . . . . 1 0 0%
Hess ian est imated with numDeriv w i l l be used .
Ca l cu la t ing LL(0) . . . =8196.02
Updating inputs . . . Done .
Ca l cu la t ing LL o f each model component . . . Done .

Figure 8: Running apollo_estimate on MNL model

We can see from Figure 8 that the estimation uses minimisation of the negative of the log-
likelihood, hence the positive values, which is of course equivalent to maximisation of the log-
likelihood itself.

Model estimation is the most likely step during which failures are encountered when working
with the Apollo package. These could be either caused by errors in using the R syntax, resulting
in generic R error messages, or errors made in the use of the various Apollo functions, leading
to more speci�c error or warning messages. Not all warnings will be terminal and the code will
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continue to run and report warnings after completion. It is in this case entirely possible that
the estimation has reached an acceptable solution with the warning messages for example being
a result of the estimation process trying parameter values that lead to numeric issues in some
iterations.

If a user runs the entire script contained in a model �le including any post-estimation processes
in one go, then errors during estimation will cause further problems in the steps that follow, but
the reporting of those problems will likely become less intuitive further down the line. The user
should in that case return to the �rst error message obtained and identify the cause of this and
remedy it in the code. In general, running the code section by section is advisable to avoid this
issue as far as possible.

4.7 Reporting and saving results

Now that we have completed model estimation, the user can output the results to the console
(screen) and/or a set of di�erent output �les. Two separate functions are used for this, namely
apollo_modelOutput for output to the screen, and apollo_saveOutput for output to �les. These
two commands do not return an object as output, i.e. are called without an object to assign the
output to. In their default versions, they are called with only the model object as input, i.e.:

apollo_modelOutput(model)

and

apollo_saveOutput(model)

In addition, it is possible to call both functions with an additional argument that is a list of
settings, i.e.

apollo_modelOutput(model,

modelOutput_settings)

and

apollo_saveOutput(model,

saveOutput_settings)

The two lists modelOutput_settings and saveOutput_settings have a number of arguments
that are all optional, namely:

printClassical: If set to TRUE, the code will output classical standard errors as well as
robust standard errors, computed using the sandwich estimator (cf. Huber, 1967). This setting
then also a�ects the reporting of t-ratios, p-values and covariance/correlation matrices. If the
computation of classical standard errors fails for some parameters, the user is alerted to this
even if classical standard errors are not reported (default is TRUE for apollo_modelOutput
and apollo_saveOutput).
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printPVal: If set to TRUE, p-values are reported (default is FALSE for apollo_modelOutput
and apollo_saveOutput).

printT1: if set to TRUE, t-ratios against 1 are reported in addition to t-ratios against
0, where this is useful for nested logit models and for multipliers (default is FALSE for
apollo_modelOutput and apollo_saveOutput).

printDiagnostics: If set to TRUE, model diagnostics such as choice shares are reported
(default is TRUE for apollo_modelOutput and apollo_saveOutput).

printCovar: If set to TRUE, the covariance matrix of parameters is reported (default is FALSE
for apollo_modelOutput and TRUE for apollo_saveOutput).

printCorr: if set to TRUE, the correlation matrix of parameters is reported (default is FALSE
for apollo_modelOutput and TRUE for apollo_saveOutput).

printOutliers: If set to TRUE, the 20 worst outliers in terms of lowest average probabilities
for the chosen alternative are reported (default is FALSE for apollo_modelOutput and TRUE
for apollo_saveOutput).

printChange: If set to TRUE, the changes from the starting values are reported for
the estimated parameters (default is FALSE for apollo_modelOutput and TRUE for
apollo_saveOutput).

The main outputs controlled by the above settings will determine what apollo_saveOutput
writes into the main output �le, which will be called modelName_output.txt where modelName is
as de�ned in apollo_control.

saveOutput_settings list has �ve additional possible settings, namely:

saveEst: If set to TRUE, the code will save a csv �le with the parameter estimates, standard
errors and t-ratios, saved as modelName_estimates.csv (default is TRUE).

saveCov: If set to TRUE, a csv �le will be produced with the covariance matrix, where, if
printClassical==TRUE, a separate �le will be produced with the classical covariance matrix,
saved as modelName_covar.csv (default is TRUE).

saveCorr: If set to TRUE, a csv �le will be produced with the correlation matrix, where, if
printClassical==TRUE, a separate �le will be produced with the classical correlation matrix,
saved as modelName_corr.csv (default is TRUE).

saveModelObject: If set to TRUE, an output �le of the rds (an R format) will be produced
containing the model object, saved as modelName_model.rds (default is TRUE).

writeF12: If set to TRUE, the code will produce an F12 �le, which is an output format used
by the ALogit software (ALogit, 2016)9, saved as modelName.f12 (default is FALSE).

An example of the on screen output is shown in Figure 9. For apollo_saveOutput, a text �le
containing output using the above settings will be produced, using a �lename corresponding to
apollo_control$modelName. The default settings imply a more verbose output for the log �le as
opposed to the on screen output.

9This is �le containing all key model outputs. It is also produced by Biogeme and ALogit provides a shell
to compare the results across models using these �les, which can come from di�erent estimation packages. See
www.alogit.com
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apollo_modelOutput(model)

Model run us ing Apollo f o r R, ve r s i on 0 . 0 . 7
www. cmc . l e ed s . ac . uk

Model name : Apollo_example_3
Model d e s c r i p t i o n : MNL model with soc io=demographics on mode cho i c e SP data
Model run at : 2019=02=28 16 : 08 : 14
Estimation method : b fgs
Model d i a gno s i s : s u c c e s s f u l convergence
Number o f i n d i v i dua l s : 500
Number o f obse rva t i on s : 7000

Number o f co r e s used : 1
Model without mixing

LL( s t a r t ) : =6413.433
LL(0) : =8196.021
LL( f i n a l ) : =4830.945
Rho=square (0) : 0 .4106
Adj .Rho=square (0 ) : 0 .4085
AIC : 9695.89
BIC : 9812.4
Estimated parameters : 17
Time taken (hh :mm: s s ) : 0 0 : 0 0 : 1 9 . 4 7
I t e r a t i o n s : 28

Estimates :
Estimate Std . e r r . t . r a t i o (0 ) Rob . std . e r r . Rob . t . r a t i o (0 )

asc_car 0 .0000 NA NA NA NA
asc_bus 0.2864 0.5830 0 .49 0 .5490 0 .52
asc_air =0.9034 0.3735 =2.42 0 .3612 =2.50
a s c_ra i l =2.0926 0.3534 =5.92 0 .3507 =5.97
asc_bus_shift_female 0 .3402 0.1328 2 .56 0 .1451 2 .34
asc_air_shi f t_female 0 .2682 0.0915 2 .93 0 .0952 2 .82
asc_ra i l_sh i f t_female 0 .1896 0.0738 2 .57 0 .0781 2 .43
b_tt_car =0.0131 0.0007 =17.85 0.0008 =17.09
b_tt_bus =0.0213 0.0016 =13.31 0.0015 =14.02
b_tt_air =0.0166 0.0028 =5.98 0 .0027 =6.21
b_tt_rai l =0.0071 0.0018 =3.89 0 .0018 =4.00
b_tt_shi ft_business =0.0062 0.0006 =10.38 0.0006 =10.56
b_access =0.0212 0.0029 =7.38 0 .0027 =7.82
b_cost =0.0762 0.0021 =36.33 0.0021 =36.40
b_cost_shi ft_business 0 .0334 0.0027 12 .18 0.0026 12 .99
cost_income_elast =0.6138 0.0301 =20.40 0.0306 =20.08
b_no_fr i l l s 0 .0000 NA NA NA NA
b_wifi 1 .0267 0.0561 18 .29 0 .0578 17 .78
b_food 0.4221 0.0550 7 .67 0 .0564 7 .48

Overview o f cho i c e s f o r MNL model component :
car bus a i r r a i l

Times a va i l a b l e 5446.00 6314.00 5264.00 6118.00
Times chosen 1946.00 358.00 1522.00 3174.00
Percentage chosen o v e r a l l 27 .80 5 .11 21 .74 45 .34
Percentage chosen when ava i l a b l e 35 .73 5 .67 28 .91 51 .88

Figure 9: On screen output obtained using apollo_modelOutput for MNL model
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5 Other model components

In Section 4, we gave a detailed overview of the approach to specifying and estimating models in
the Apollo package. In this section, we look at the use of other model components, thus replacing
the part of the code discussed in Section 4.5.2. We discuss ready-to-use functions for a number of
commonly used models before explaining how a user can add his/her own model functions. We
group these model structures

5.1 Other RUM-consistent discrete choice models

5.1.1 Nested logit

For the nested logit (NL) model (Daly and Zachary, 1978; McFadden, 1978; Williams, 1977),
we adopt the e�cient implementation of Daly (1987) but adapt it to the more commonly used
version which divides the utilities by the nesting parameter in the within nest probabilities (see
the discussions in Train 2009, chapter 4, and Koppelman and Wen 1998). Let us assume we have
a nesting structure with three levels and that alternative i falls into nest om on the lowest level
of nesting, which itself is a member of nest m on upper level of nesting, with m being in the root
nest. We would then have that 0 < λom ≤ λm ≤ λr ≤ 1. The probability10 of person n choosing
alternative i in choice situation t is then given by:

Pi,n,t = Pm,n,t P(om|m),n,t P(i|om),n,t (4)

where

P(i|om),n,t =
e
(
Vi,n,t
λom

)∑
j∈om e

(
Vj,n,t
λom

)
(5)

P(om|m),n,t =
e(
λom
λm

Iom,n,t)∑Mm
lm=1 e

(
λlm
λm

Ilm,n,t)
(6)

Pm,n,t =
e(
λm
λr

Im,n,t)∑M
m=1 e

(
λl
λr
Il,n,t)

(7)

with

Im,n,t = log

Mm∑
lm=1

e(
λlm
λm

Ilm,n,t) (8)

Iom,n,t = log
∑
j∈om

e
(
Vj,n,t
λom

)
, (9)

10For the sake of simplicity of notation, we assume here that all alternatives are available in every choice situation
for every person. In the code, we of course allow for departures from this assumption.
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where 0 < λom ≤ λm ≤ λr ≤ 1. We also specify the model so that the nest parameter of the root
is normalised to 1.

In the e�cient implementation of Daly (1987), we then work in logs, where we de�ne a set of
elementary alternatives E and a tree function t. The tree function gives us a set of composite
nodes C = (t(j), t(t(j)), . . .∀j ∈ E). For each elementary alternative, there is a single path up
to the root r, where, for alternative i, this is given by: A(i, r, t) = (i, t(i), t(t(i)) . . . r). We then
have that:

log(Pi,n,t) =
∑

a∈A(j,r,t)

1

λt(a)

(
Va,n,t − ˜Vt(a),n,t) , (10)

where λt(a) is the nesting parameter for the nest that contains a, and for any non-elementary
elements a, we have:

Ṽa,n,t = λa log
∑
l∈a

exp(
Vl,n,t
λa

) (11)

where l ∈ a gives all the elements contained in a, which can be a mixture of nests and elementary
alternatives. For normalisation, we set λr = 1, and for consistency with utility maximisation, we
then have that 0 < λa ≤ 1, ∀a and λa ≤ λt(a), i.e. the λ terms in a given chain A(j, r, t) decrease
as we go from the root down the tree.

In the actual user syntax, we adopt an approach inspired by ALogit11 (ALogit, 2016) where
a user needs to specify a chain going from the root to each of the elementary alternatives.
To illustrate this, we look at an example on the data described in Section 3.1, where we
implement a three-level NL (Apollo_example_5.r). A simpler two-level model is available in
Apollo_example_4.r.

In the �rst level of the tree, alternatives are divided into public transport (PT) alternatives and
car, while the PT alternatives are then further split into a nest containing rail and air (fastPT),
where bus is then on its own. To estimate this model, we specify two additional parameters
compared to the MNL model in Section 4.5.2 in the apollo_beta vector, say lambda_PT and
lambda_fastPT.

Just like apollo_mnl, the apollo_nl function is called as follows:

P[[‘model‘]] = apollo_nl(nl_settings,

functionality)

The list nl_settings contains all the same elements as for MNL, i.e. the compulsory inputs
alternatives, avail, choiceVar, V and the optional input rows. For further details on these,
the reader is referred back to Section 4.5.2. For Nested Logit, the list nl_settings needs to
contain two additional arguments, namely:

nlNests: A named vector containing the names of the nests and the associated structural
parameters λ. For each λ, we give the name of the associated parameter. This list needs to
include the root, which is the only nest for which the choice of name is not free for the user
to determine.

11www.alogit.com
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### Spec i f y ne s t s f o r NL model
n lNest s = l i s t ( root=1, PT=lambda_PT , fastPT=lambda_fastPT )

### Spec i f y t r e e s t ru c tu r e f o r NL model
n lS t ruc tu r e= l i s t ( )
n lS t ruc tu r e [ [ " root " ] ] = c (" car " ,"PT")
n lS t ruc tu r e [ [ "PT" ] ] = c (" bus " ," fastPT ")
n lS t ruc tu r e [ [ " fastPT " ] ] = c (" a i r " ," r a i l ")

### Def ine s e t t i n g s f o r NL model
n l_se t t ing s <= l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
V = V,
n lNest s = nlNests ,
n lS t ruc tu r e = n lS t ruc tu r e

)

### Compute p r o b a b i l i t i e s us ing NL model
P [ [ " model " ] ] = apol lo_nl ( n l_set t ings , f u n c t i o n a l i t y )

Figure 10: Nested logit implementation (extract)

nlStructure: A list containing one element per nest, where each element is a vector with
the names of the contents of that nest, which can itself be a mix of nests and elementary
alternatives.

In our example, as illustrated in Figure 10 (where we do not show the de�nition of alternatives,
availabilities, choices and utilities, as these remain the same as in the MNL model in Section 4.5.2),
we have three nests, where this includes the root. The order of elements is of no importance as
they are identi�ed by the nest names, yet for consistency, using the same order as in the model
structure which follows is advisable. For each nest, we give the nesting parameter, using the
parameter names previously de�ned in apollo_beta. The �nal step in the de�nition of the NL
model is a call to apollo_nl with the appropriate inputs. Extensive checks are performed by this
function, notably ensuring that for each alternative, there is exactly one chain from the root to
the bottom of the tree.

After estimation, the model reports estimates for all parameters, as for any model,
but in addition prints out (except if apollo_control$noDiagnostics==FALSE) the resulting
tree structure with the estimated nesting parameters in brackets (and this is repeated with
apollo_modelOutput and apollo_saveOutput if printDiagnostics is set to TRUE in their
respective settings). In the case of our example, shown in Figure 11, we see that, as intended,
there is a direct link from the root to the car alternative, while all other alternatives are nested
in a public transport nest, with a further layer of nesting for rail and air within that nest. The
nesting parameters also follow the required decreasing trend when going from the root down the
tree.

5.1.2 Cross-nested logit

For our implementation of the cross-nested logit (CNL) model (Vovsha, 1997), we follow the
�Generalised Nested Logit" (GNL) model of Wen and Koppelman (2001), with all nesting
parameters freely estimated, and the constraint on the allocation parameters (showing the
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Nest : root (1 )
|=======Al t e rna t i v e : car
'=Nest : PT (0 . 6953 )

|====Al t e rna t i v e : bus
'=Nest : fastPT (0 . 5862 )

|=Al t e rna t i v e : a i r
'=Al t e rna t i v e : r a i l

Figure 11: Nested logit tree structure after estimation

membership of alternative j in nest m) that 0 ≤ αj,m ≤ 1, ∀j,m and
∑

j αj,m = 1, ∀m. Only
two-level versions of CNL are available through the apollo_cnl function, i.e. one layer of nests
below the root, with the membership of a non-root nest being made up entirely of elementary
choice alternatives.

In our implementation, each alternative needs to fall into at least one nest on the second level
of the tree, where this can be a single alternative nest. We then have M nests, S1 to SM , where
αj,m represents allocation of alternative j to nest Sm. We have that 0 ≤ αj,m ≤ 1 ∀ j,m and∑M

m=1 αj,m = 1 ∀ j. The probabilities are then given by a sum over nests:

Pi,n,t =
M∑
m=1

PSm,n,t P(i|Sm),n,t (12)

where

PSm,n,t =

(∑
j∈Sm

(
αj,me

Vj,n,t
) 1
λm

)λm
∑M

l=1

(∑
j∈Sl

(
αj,leVj,n,t

) 1
λl

)λl (13)

P(i|Sm),n,t =

(
αi,me

Vi,n,t
) 1
λm∑

j∈Sm
(
αj,meVj,n,t

) 1
λm

(14)

Just like apollo_mnl and apollo_nl, the apollo_nl function is called as follows:

P[[‘model‘]] = apollo_cnl(cnl_settings,

functionality)

The list cnl_settings contains all the same elements as for MNL, i.e. the compulsory inputs
alternatives, avail, choiceVar, V and the optional input rows. For further details on these,
the reader is referred back to Section 4.5.2. For Cross-Nested Logit, the list cnl_settings needs
to contain two additional arguments, namely:

cnlNests: A named vector containing the names of the nests and the associated structural
parameters λ. For each λ, we give the name of the associated parameter. Unlike in apollo_nl,
the root is not included for apollo_cnl as only two-level structures are used.

cnlStructure: A matrix showing the allocation of alternatives to nests, with one row per nest
and one column per alternative, using the same ordering as in alternatives and cnlNests.
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For our implementation example on the simple mode choice data, we de�ne a structure where
air is nested together with rail (fast PT), and bus is nested together with rail (ground-based
PT), but there is no joint nest membership for bus and air. Finally, car is nested on its own.
This means that the only alternative for which allocation parameters need to be estimated is
the rail alternative, where we have that αrail,fastPT + αrail,groundPT = 1, with both αrail,fastPT
and αrail,groundPT being constrained to be between 0 and 1. Imposing constraints directly on
the estimation routine is ine�cient and can a�ect the standard error calculations. We instead
recommend the use of a logistic transform, where, with alternative j having an estimated allocation
parameter for M di�erent nests, we have that, for nest m:

αj,m =
e(α0,j,m)∑M
l=1 e

(α0,j,l)
, (15)

where a normalisation is required, for example �xing α0,j,1 = 0.
The de�nitions of the alternatives alternatives, availabilities avail, the choice variable

choiceVar and the utilities V remains the same as in the MNL and NL codes. Like in the NL
model, we de�ne a vector of names for the nests, cnlNests, which de�nes the names of the nests
and the associated structural parameters λ, using the parameter names previously de�ned in
apollo_beta.

In our example (Apollo_example_6.r), as illustrated in Figure 12 (where we do not show
the de�nition of alternatives, availabilities, choices and utilities, as these remain the same as in
the MNL and NL models), we have three nests, one for air and rail (fastPT), one for bus and
rail (groundPT), and one for car, which is nested on its own. The nesting parameter for the car
nest is set to 1 given this is a single alternative nest. Our CNL implementation is limited to a
two-level structure, and all elementary alternatives need to belong to at least one nest below the
root, even if these are single alternative nests. This means that all nests de�ned by the user are
automatically positioned below the root and the root is thus not included in the de�nition of the
nest or tree structure given by the user.

For the allocation or nest membership parameters, car and bus both fall into one nest
exactly, so they have αj,m = 1 for the speci�c nest m they fall into and the remaining ones

are set to zero. For rail, we de�ne αrail,fastPT = e(α0,rail,fastPT )

e(α0,rail,fastPT )+e(α0,rail,groundPT )
, and obviously

αrail,groundPT = 1 − αrail,fastPT , while we use the normalisation that α0,rail,groundPT = 0,
by including the parameters alpha0_rail_fastP in apollo_fixed. The crucial part of the
de�nition of a CNL model is again the actual model structure, which in our code is again
called cnlStructure, where this is now made up of a matrix with one row per nest, and one
alternative per column, where the entry in a given cell corresponds to the appropriate allocation
parameter. The order of rows and columns needs to be consisted with the order in cnlNests and
alternatives, respectively.

In the model output, the code reports the resulting tree structure with the estimated allocation
and nesting parameters. In the case of our example, shown in Figure 13, we see that, as intended,
car, bus and air all belong to one nest only, while the estimation has shown that the split for
rail is almost 50-50, with the λ parameter being smaller in the fastPT nest. In reporting the
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### Spec i f y ne s t s f o r CNL model
cn lNes t s = l i s t ( fastPT=lambda_fastPT , groundPT=lambda_groundPT , car=1)

### Spec i f y nest a l l o c a t i o n parameters f o r a l t e r n a t i v e s inc luded in mul t ip l e ne s t s
alpha_rail_fastPT = exp ( alpha0_rail_fastPT ) /( exp ( alpha0_rail_fastPT ) + exp ( alpha0_rail_groundPT ) )
alpha_rail_groundPT = 1 = alpha_rail_fastPT

### Spec i f y t r e e s t ruc ture , showing membership in ne s t s ( one row per nest , one column per a l t e r n a t i v e )
cn lS t ruc tu r e = matrix (0 , nrow=length ( cn lNest s ) , nco l=length (V) )
cn lS t ruc tu r e [ 1 , ] = c ( 0 , 0 , 1 , alpha_rail_fastPT ) # fastPT
cn lS t ruc tu r e [ 2 , ] = c ( 0 , 1 , 0 , alpha_rail_groundPT ) # groundPT
cn lS t ruc tu r e [ 3 , ] = c ( 1 , 0 , 0 , 0 ) # car

### Def ine s e t t i n g s f o r CNL model
cn l_se t t i ng s <= l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
V = V,
cn lNest s = cnlNests ,
cn lS t ruc tu r e = cn lS t ruc tu r e

)

### Compute p r o b a b i l i t i e s us ing CNL model
P [ [ " model " ] ] = apol lo_cnl ( cn l_set t ings , f u n c t i o n a l i t y )

Figure 12: Cross-nested logit implementation (extract)

allocation parameters, the code uses the �nal values used inside cnlStructure, i.e. after the
logistic transform in our example.

Fina l s t r u c tu r e f o r CNL model component
car bus a i r r a i l lambda

fastPT 0 0 1 0.4928 0.4012
groundPT 0 1 0 0.5072 0.5284
car 1 0 0 0 1

Figure 13: Cross-nested logit structure after estimation

5.2 Non-RUM decision rules for discrete choice

In this section, we present the use of two alternatives to RUM in Apollo, namely random regret
minimisation (RRM) and Decision Field Theory (DFT).

5.2.1 Random regret minimisation (RRM)

The fundamental assumption in regret theory is that what matters is not only the realised outcome
but also on what could have been obtained by selecting a di�erent course of action. This means
that the model incorporates anticipated feelings of regret that would be experienced once ex-post
decision outcomes are revealed to be �unfavourable�. The value of an alternative can thus only
be assigned following a cross-wise evaluation of alternatives, and this is the cause for substantial
increases in computational complexity with large choice sets.

Following (Chorus, 2010), the deterministic regret for alternative i (i = 1, . . . , I) for respondent
n in choice task t is given:

Ri,n,t =
K∑
k=1

∑
j 6=i

ln
(

1 + eβk(xj,n,t,k−xi,n,t,k)
)

(16)
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where βk is the coe�cient associated with attribute xk, with k = 1, . . . ,K. The regret is informed
by all the pairwise comparisons, where regret for alternative i increases whenever an alternative
j 6= i performs better than i on a given attribute. When using extreme value error terms, RRM
models are in fact Logit models, albeit not RUM-consistent models. With the assumption of type
I extreme value errors, the probability of respondent n choosing alternative i in choice task t, is
now simply given by a MNL formula as:

Pi,n,t =
e−Ri,n,t∑J
j=1 e

−Rj,n,t
. (17)

In RRM, we minimise the regret rather than maximising the utility, and this is achieved by
maximising the negative regret in Equation 17.

Given the above point, any of the logit family models in Apollo can be used also for regret
minimisation, by simply replacing the utilities (i.e. V) by the negative of regret. The labour
intensive part comes in specifying the regret functions for the alternatives, i.e. implementing
Equation 16.

An example of an RRM implementation is given in Figure 14, where we apply a MNL (i.e.
non-nested) version of RRM to the mode choice data from Section 3.1. We use a simpler
implementation than in Section 4.5.2, with no socio-demographics. This example is available
in Apollo_example_7.r.

In a RUM model, only the attributes applying to a given alternative are used in the utility
for that alternative, and the absence of access time for car or service quality for car and bus is
of no importance. In a RRM model, we need to create these attributes given that the di�erences
across the alternatives are used for all attributes. We next de�ne the regret function for each
alternative, where we here only show the regret for the car alternative, with a corresponding
formulation applying for other modes, each time using Equation 16. For the alternative speci�c
constants (ASCs), we adopt the convention of entering them directly into the regret function
rather than using Equation 16. In the mnl_settings list, we now de�ne V to be the negative of
R by multiplying each element in R by -1. We �nally make the call to apollo_mnl.

5.2.2 Decision �eld theory (DFT)

Decision �eld theory (DFT) originates in mathematical psychology (Busemeyer and Townsend,
1992, 1993) and is very di�erent to both RUM and RRM. The key assumption under a DFT
model is that the preferences for alternatives update over time. The decision-maker considers the
alternatives until they reach an internal threshold (similar to the concept of satis�cing, where one
of the options is deemed `good enough') or some external threshold (i.e. some time constraint,
where a decision-maker stops deliberating on the alternatives as a result of running out of time
to make the decision).

An example of a decision process under DFT is given in Figure 15. In this particular example,
the decision-maker chooses di�erent alternatives if they make their choice after reaching an internal
threshold (which is represented by the horizontal line) on the 4th preference updating timestep or
if they conclude after 10 steps upon reaching a time threshold. Mathematically, DFT has been
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Prepare r e g r e t components f o r c a t e g o r i c a l v a r i a b l e s
access_car = 0
RFr i l l s_car = b_no_fr i l l s
RFri l l s_bus = b_no_fr i l l s
RFr i l l s_a i r = b_no_fr i l l s * ( s e r v i c e_a i r == 1 ) + b_wifi * ( s e r v i c e_a i r == 2 ) + b_food * (

↪→ s e r v i c e_a i r == 3 )
RFr i l l s_ r a i l = b_no_fr i l l s * ( s e r v i c e_ r a i l == 1 ) + b_wifi * ( s e r v i c e_ r a i l == 2 ) + b_food * (

↪→ s e r v i c e_ r a i l == 3 )

### Li s t o f r e g r e t f unc t i on s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
R = l i s t ( )
R[ [ ' car ' ] ] = asc_car +

log (1+exp (b_tt_bus*time_bus = b_tt_car* time_car ) ) +
log (1+exp ( b_tt_air* time_air = b_tt_car* time_car ) ) +
log (1+exp ( b_tt_rai l * t ime_ra i l = b_tt_car* time_car ) ) +
log (1+exp ( b_cost *( cost_bus = cost_car ) ) ) +
log (1+exp ( b_cost *( cos t_ai r = cost_car ) ) ) +
log (1+exp ( b_cost *( c o s t_ra i l = cost_car ) ) ) +
log (1+exp ( b_access *( access_bus = access_car ) ) ) +
log (1+exp ( b_access *( acce s s_a i r = access_car ) ) ) +
log (1+exp ( b_access *( acce s s_ra i l= access_car ) ) ) +
log (1+exp ( RFri l l s_bus = RFri l l s_car ) ) +
log (1+exp ( RFr i l l s_a i r = RFri l l s_car ) ) +
log (1+exp ( RFr i l l s_ r a i l = RFri l l s_car ) )

. . .

### Def ine s e t t i n g s f o r RRM model , which i s MNL with negat ive r e g r e t as u t i l i t y
mnl_sett ings <= l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
V = lapp ly (R, "*" , =1)

)

### Compute p r o b a b i l i t i e s us ing MNL model
P [ [ 'model ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 14: Implementation of random regret MNL model

operationalised di�erently depending on whether internal or external thresholds are used. A full
speci�cation of DFT with internal thresholds is given by Busemeyer and Townsend (1993), while
we focus here on DFT with external thresholds (c.f. Roe et al. (2001) for the �rst adaptation of
DFT with external thresholds for multiple alternatives). For DFT with an external threshold,
the preference values update stochastically as a result of the assumption that a decision-maker
considers just one attribute of an alternative at each timestep. Consequently, the preference values
for each alternative update iteratively:

Pt = S · Pt−1 + Vt, (18)

where Pt is a column vector containing the preference values of each alternative i at time t. S is
a feedback matrix with memory and sensitivity parameters (detailed in Equation 19) and Vt is a
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Figure 15: An example of a decision-maker stopping upon reaching either an internal or external
threshold

valence vector (Equation 20), which varies depending on which attribute is attended to at time
t. The feedback matrix used in Apollo is based on the de�nition by Hotaling et al. (2010):

S = I − φ2 × exp(−φ1 ×D2), (19)

where I is the identity matrix of size n and n is the number of alternatives. The feedback parameter
has two free parameters. The �rst, φ1, is a sensitivity parameter, which allows for competition
between alternatives that are more similar (in terms of attribute values). The second, φ2, is a
memory parameter, which captures whether attributes considered at the start of the deliberation
process or attributes considered at the end are more important. Finally, D is some measure of
distance between the alternatives. In our code, we use the Euclidean distance for simplicity. Next,
the valence vector can be described as:

Vt = C ·M ·Wt + εt, (20)

where C is a contrast matrix used to rescale the attribute values such that they sum to zero, M is
a matrix containing the attribute values for all of the alternatives, Wt = [0..1..0]′ with entry k = 1
if and only if attribute k is the attribute being attended to by the decision-maker at timestep t,
and εt is an error term.

The implementation of DFT in Apollo allows for two di�erent ways of accounting for the
relative importance of attributes. A user may de�ne attribute importance weights wk, for each
attribute, that are to be estimated and which correspond to the likelihood of a decision-maker
attending to that attribute k. These however have the limitation that they must sum to one,
which consequently requires the user to have a priori knowledge on the directionality of attributes
(Hancock et al., 2018). Alternatively, the analyst may use `attribute scaling coe�cients'. These
have many bene�ts (see Hancock et al. 2019 for a detailed explanation of these), including, most
importantly, avoiding the limitation of having to sum to one. By instead assuming that each
attribute is attended to with the same likelihood (all weights, wk = 1/n), the relative importance



Apollo: user manual for version 0.0.7 38

can instead enter as a set of scaling coe�cients, sk, which are applied to the attributes before
they are entered (through M in Equation 20) into the calculation of the valence vector at each
timestep.

The error term ε is drawn from independent and identically distributed normal draws with
mean 0 and a standard deviation which is an estimated parameter. Consequently, the preference
values Pt converge to a multivariate normal distribution (Roe et al., 2001). To calculate the
probabilities of alternatives under DFT we thus simply require the expectation and covariance
of Pt (ξt and Ωt, respectively). Hence, the probability of choosing alternative j from a set of J
alternatives at time t is:

PDFT

[
max
i∈J

Pt [i] = Pt [j]

]
=

∫
X>0

exp
[
−(X − Γ)′Λ−1(X − Γ)/2

]
/(2π|Λ|0.5)dX, (21)

with X the set of di�erences between the preference value for the chosen alternatives and each
other alternative, X = [Pt [j]− Pt [1] , ..., Pt [j]− Pt [J ]]′. Additionally, we require transformations
of the expectation and covariance, Γ = Lξt, Λ = LΩtL

′, with L a matrix comprised of a column
vector of 1s and a negative identity matrix of size J − 1 where J is the number of alternatives.
The column vector of 1s is placed in the ith column where i is the chosen alternative.

An implementation of DFT is given in apollo_dft, which is called as:

P[[‘model‘]] = apollo_dft(dft_settings,

functionality)

where dft_settings contains the following elements:

� alternatives: A named vector containing the names of the alternatives, as for other
discrete choice models.

� avail: A list containing availabilities, as for other discrete choice models.
� choiceVars: A variable indicting the column in the database which identi�es the alternative
chosen in a given choice situation, as for other discrete choice models.

� attrValues: A list with attribute values for alternatives, where this list contains one list
per alternative, using the names from alternatives. Each alternative-speci�c list then
contains the attribute values for that alternative, with one entry per attribute, where these
are all column vectors with one entry per observation. DFT requires all alternatives to
have each of the speci�ed attributes, so by default will set attribute values of zero for any
attributes not provided for a given alternative. Note that attributes speci�ed here that are
not included in either attrWeights or attrScalings will be ignored.

� altStart: A list containing a starting preference value for each alternative, using the same
names as alternatives. As with other models, these are generally de�ned in apollo_beta,
but could involve interactions with socio-demographics or be randomly distributed across
individuals and/or observations.

� attrWeights: A list of weights, with one for each attribute. These should sum to one and
will be adjusted accordingly if they do not. As mentioned above, any attributes included
in attrValues but missing from attrWeights will be ignored. Conversely, any attribute
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missing in attrValues but included in attrWeights will be created in attrValues but set
to zero. Note that attrWeights should be set to 1 if attrScalings is provided.

� attrScalings: A list of scaling parameters that are applied to attribute values before
they are passed into M in Equation 20. These do not need to sum to 1 across the set
of attributes. As mentioned above, any attributes included in attrValues but missing
from attrScalings will be ignored. Conversely, any attribute missing in attrValues

but included in attrScalings will be created in attrValues but set to zero. Note that
attrScalings should be set to 1 if attrWeights is provided.

� procPars: A list containing the four DFT `process parameters'. The �rst of these is
error_sd, which corresponds to the standard deviation of the error term in Equation 20.
The second, timesteps, is the number of preference updating timesteps (t in Equations 18
and 20). apollo_dft will automatically adjust the number of timesteps such that there is at
least one timestep. The �nal process parameters are the sensitivity and process parameters,
phi1 and phi2, from Equation 19. All of these parameters can be entered as single values
to be used across the dataset, or can take choice-set dependent values.

� rows: The optional rows argument already described for the earlier models.

An example of a DFT implementation is given in Figure 16, where we apply a DFT model with
scale parameters to the mode choice data from Section 3.1. We use an identical implementation to
that of the MNL model in Section 4.5.2, with the same socio-demographics parameters. This is a
key advantage of using scaling parameters (with the weights instead being �xed) in a DFT model,
as it allows us to make equivalent adjustments to the parameters. This example is available in
Apollo_example_9.r, where a simpler DFT model without covariates applied to the Swiss route
choice data is available in Apollo_example_8.r.

Values for alternatives without a given attribute (wi�, food and access time for car, for
example) are set to zero (and would be automatically set to zero if not initially provided).
Additionally, DFT weights are automatically rescaled to sum to one, therefore attribute speci�c
scalings (such as the one for the travel time coe�cient in this example) are more e�ciently
employed through the use of attribute scaling parameters. Consequently, attrWeights is set to
1 in dft_settings.

Note that DFT process parameters can often cause identi�cation or estimation issues (c.f.
(Hancock et al., 2019)). Consequently, care is required, particularly when estimating DFT models
on datasets where the process parameters are unlikely to have an impact, as poor initial starting
values for the parameters can result in convergence to poor local optima. Here, we adjust the
process parameters to aid estimation. We use exponentials to restrict the number of deliberation
timesteps to be greater than 1 and the sensitivity parameter to be positive, and a logistic transform
to ensure the memory parameter falls between 0 and 1. Additionally, with this data, we �x
error_sd by including it in apollo_fixed. Finally, it is preferable to use non-zero starting values
for all parameters.
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io=demographics
asc_bus_value = asc_bus + asc_bus_shift_female * female
asc_air_value = asc_air + asc_air_shi f t_female * female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female * female
b_tt_car_value = b_tt_car + b_tt_shi ft_business * bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business * bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business * bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business * bus ine s s
b_cost_value = ( b_cost + b_cost_shi ft_business * bus ine s s ) * ( income / mean_income ) ^

↪→ cost_income_elast

### Li s t o f a t t r i bu t e va lues
at t rVa lues = l i s t ( )
a t t rVa lues [ [ ' car ' ] ] = l i s t ( time=time_car , a c c e s s=0 , co s t=cost_car , w i f i=0

↪→ , food=0 )
at t rVa lues [ [ ' bus ' ] ] = l i s t ( time=time_bus , a c c e s s=access_bus , co s t=cost_bus , w i f i=0

↪→ , food=0 )
at t rVa lues [ [ ' a i r ' ] ] = l i s t ( time=time_air , a c c e s s=acces s_a i r , co s t=cost_ai r , w i f i =1*( s e r v i c e_a i r ==

↪→ 2) , food=1*( s e r v i c e_a i r == 3) )
at t rVa lues [ [ ' r a i l ' ] ] = l i s t ( time=time_rai l , a c c e s s=acce s s_ra i l , c o s t=cos t_ra i l , w i f i =1*( s e r v i c e_ r a i l ==

↪→ 2) , food=1*( s e r v i c e_ r a i l == 3) )

### Li s t o f i n i t i a l p r e f e r en c e va lues
a l t S t a r t = l i s t ( )
a l t S t a r t [ [ ' car ' ] ] = asc_car
a l t S t a r t [ [ ' bus ' ] ] = asc_bus_value
a l t S t a r t [ [ ' a i r ' ] ] = asc_air_value
a l t S t a r t [ [ ' r a i l ' ] ] = asc_rai l_value

### Li s t o f a t t r i bu t e s c a l i n g f a c t o r s
a t t r S c a l i n g s = l i s t ( time = l i s t ( car = b_tt_car_value , bus = b_tt_bus_value , a i r = b_tt_air_value ,

↪→ r a i l = b_tt_rail_value ) ,
a c c e s s = b_acc ,
co s t = b_cost_value ,
w i f i = b_wifi ,
food = b_food )

### Li s t o f p roce s s parameters
procPars = l i s t (

error_sd=p_error_sd ,
t imesteps=1+exp ( p_timesteps ) ,
phi1=exp ( p_phi1 ) ,
phi2=exp ( p_phi2 ) /(1+exp ( p_phi2 ) )

)

### Def ine s e t t i n g s f o r DFT model component
d f t_se t t i ng s <= l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
a t t rVa lues = attrValues ,
a l t S t a r t = a l tS ta r t ,
attrWeights = 1 , ### Using s c a l i n g f a c t o r s , so attrWeights must be s e t to 1 .
a t t r S c a l i n g s = a t t rS ca l i n g s ,
procPars = procPars

)

### Compute cho i c e p r o b a b i l i t i e s us ing DFT model
P [ [ 'model ' ] ] = apo l lo_dft ( d f t_set t ings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 16: DFT implementation for the SP dataset



Apollo: user manual for version 0.0.7 41

5.3 Models for ranking, rating and continuous dependent variables

Especially when developing hybrid choice models (cf. Section 7.3, some of the dependent variables
in the model will not be of the discrete choice type. We now look at how to model such dependent
variables in Apollo.

5.3.1 Exploded logit

Datasets may include the full ranking for alternatives, in which case an exploded logit model can
be used. In particular, with J di�erent alternatives for individual n in choice situation t, we may
observe the ranking Rnt = 〈Rnt,1, . . . , Rnt,J〉, where Rnt,1 is the index for the alternative which is
ranked the highest, i.e. the choice in a simple discrete choice setting. Note that this is di�erent
from the convention where Rnt,j is the rank of alternative j; here, Rnt,j refers to the speci�c
alternative ranked in jth place.

We then have that the probability of the observed ranking is given by:

Pnt =
J−1∏
i=1

e
µiVRnt,i∑J

j=i e
µiVRnt,j

, (22)

where this is given by a product of logit probabilities for all but the last ranking (which is just a
single alternative), where the denominator gradually omits alternatives, and where we allow for
di�erences in scale across the stages, with an appropriate normalisation, e.g. µ1 = 1.

In Apollo, the exploded logit model is implemented in the function apollo_el, which is called
called as follows:

P[[‘model‘]] = apollo_el(el_settings,

functionality)

where the contents of el_settings are a little di�erent from the earlier MNL, NL and CNL
models. In particular, we have:

alternatives: A named vector containing the names of the alternatives, as for MNL, NL and
CNL.

avail: A list containing availabilities, as for MNL, NL and CNL.
choiceVars: A list containing the names of the variables indicating the column in the database
which identify the choices at each stage in the ranking, except for the �nal (worst) alternative.
If not all alternatives are available for all individuals, then some of the later rankings will not
apply for these individuals, and the user should put a value of NA in the data for those entries.
For example, if a given person only has two out of the four alternatives available, then the
third and fourth ranking should be given as -1 in the data for that individual.

V: A list of utilities, as for MNL, NL and CNL.
scales: An optional argument given by a list, with one entry per stage in the ranking, giving
the scale parameter to be used in that stage.

rows: The optional rows argument already described for the earlier models.
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An example using the exploded logit model is given in Apollo_example_10.r, using the drug
choice data from Section 3.3. We use a dummy coded speci�cation for the three categorical
variables, along with a continuous speci�cation for risk and cost.

The utility for alternative j in choice situation t for individual n is given by:

Vj,n,t =

5∑
s=1

βbrands ·
(
xbrandj,n,t == s

)
+

6∑
s=1

βcountrys ·
(
xcountryj,n,t == s

)
+

3∑
s=1

βcharacteristics ·
(
xcharacteristicj,n,t == s

)
+ βside_effects · xside_effectsj,n,t
+ βprice · xpricej,n,t (23)

For the �rst three rows in Equation 23, one of the β parameters in each row is constrained to zero
(dummy coded), and not all levels apply for each alternative, as described in Appendix B.

The implementation of the model is shown in Figure 17. Special care is required for the
qualitative attributes. These are coded as text in the data, and one parameter needs to be
associated with each level, where we impose an appropriate normalisation in apollo_fixed to set
the parameter for one level to zero for each attribute. The levels that are included in the utility
functions di�er across alternatives, as re�ected in the design of the survey (cf. Table A3). The
key di�erent from an MNL model arises in the inclusion of choiceVars instead of choiceVar

in el_settings where this di�ers from giving a single preferred alternative for each observation
and instead giving one column for each stage in the ranking except for the �nal stage. We also
provide scale parameters for these three stages in el_settings$scales, where the scale for the
�rst stage is normalised to 1.

5.3.2 Ordered logit

For ordinal dependent variables, the function apollo_ol provides an implementation of the
ordered logit model. Speci�cally, let Yn,t be the observed value for the dependent variable for
the tth observation for individual n, where Yn,t can take S di�erent possible values, going from
s = 1, . . . , S. The probability of observing value s is then given by:

PYn,t=s =
eτs−Vn,t

1 + eτs−Vn,t
− eτs−1−Vn,t

1 + eτs−1−Vn,t (24)

The likelihood of the observed value Yn,t is then given by:

LYn,t =
S∑
s=1

δ(Yn,t=s)

[
eτs−Vn,t

1 + eτs−Vn,t
− eτs−1−Vn,t

1 + eτs−1−Vn,t

]
, (25)
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Li s t o f u t i l i t i e s : these must use the same names as in e l_se t t ing s , order i s i r r e l e v a n t
V = l i s t ( )
V[ [ ' a l t1 ' ] ] = ( b_brand_Artemis *( brand_1=="Artemis ") + b_brand_Novum*( brand_1=="Novum")

+ b_country_CH*( country_1=="Switzer land ") + b_country_DK*( country_1=="Denmark") +
↪→ b_country_USA*( country_1=="USA")

+ b_char_standard *( char_1=="standard ") + b_char_fast *( char_1=="f a s t ac t ing ") +
↪→ b_char_double *( char_1=="double s t r ength ")

+ b_risk* s ide_e f f e c t s_1
+ b_price*price_1 )

V[ [ ' a l t2 ' ] ] = ( b_brand_Artemis *( brand_2=="Artemis ") + b_brand_Novum*( brand_2=="Novum")
+ b_country_CH*( country_2=="Switzer land ") + b_country_DK*( country_2=="Denmark") +

↪→ b_country_USA*( country_2=="USA")
+ b_char_standard *( char_2=="standard ") + b_char_fast *( char_2=="f a s t ac t ing ") +

↪→ b_char_double *( char_2=="double s t r ength ")
+ b_risk* s ide_e f f e c t s_2
+ b_price*price_2 )

V[ [ ' a l t3 ' ] ] = ( b_brand_BestValue *( brand_3=="BestValue ") + b_brand_Supermarket *( brand_3=="Supermarket
↪→ ") + b_brand_PainAway*( brand_3=="PainAway")

+ b_country_USA*( country_3=="USA") + b_country_IND*( country_3=="Ind ia ") + b_country_RUS
↪→ *( country_3=="Russia ") + b_country_BRA*( country_3=="Braz i l ")

+ b_char_standard *( char_3=="standard ") + b_char_fast *( char_3=="f a s t ac t ing ")
+ b_risk* s ide_e f f e c t s_3
+ b_price*price_3 )

V[ [ ' a l t4 ' ] ] = ( b_brand_BestValue *( brand_4=="BestValue ") + b_brand_Supermarket *( brand_4=="Supermarket
↪→ ") + b_brand_PainAway*( brand_4=="PainAway")

+ b_country_USA*( country_4=="USA") + b_country_IND*( country_4=="Ind ia ") + b_country_RUS
↪→ *( country_4=="Russia ") + b_country_BRA*( country_4=="Braz i l ")

+ b_char_standard *( char_4=="standard ") + b_char_fast *( char_4=="f a s t ac t ing ")
+ b_risk* s ide_e f f e c t s_4
+ b_price*price_4 )

### Def ine s e t t i n g s f o r exploded l o g i t
e l_ s e t t i n g s = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
cho iceVars = l i s t ( best , second_pref , th i rd_pre f ) ,
V = V,
s c a l e s = l i s t (1 , scale_2 , scale_3 )

)

### Compute exploded l o g i t p r o b a b i l i t i e s
P [ [ " model " ] ]= apo l lo_e l ( e l_se t t ing s , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 17: Exploded logit implementation

where, for normalisation, we set τS = +∞ and τ0 = −∞, such that the probability of Yn,t = 1 is

given by eτ1−Vn,t

1+eτ1−Vn,t
while the probability of Yn,t = S is given by 1− eτS−Vn,t

1+eτS−1−Vn,t . In our notation,

Vn,t is the utility used inside the ordered logit model, which will be a function of characteristics
of the decision maker and the scenario that the dependent variable relates to.

For an example using apollo_ol, see the section on hybrid choice models (Section 7.3). In
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Apollo, the apollo_ol function is called as follows:

P[[‘model‘]] = apollo_ol(ol_settings,

functionality)

where the contents of ol_settings are a little di�erent from the earlier MNL, NL and CNL
models. In particular, we have:

outcomeOrdered: A variable indicating the column in the database which identi�es the level
selected for the ordinal variable in each observation.

V: A numeric vector containing the explanatory variable used in the ordered logit model, i.e.
the utility in Equation 24.

tau: A vector containing the names of the threshold parameters that are used in the model.
These need to be de�ned in apollo_start, and should have one fewer element than the
number of possible values for the dependent variable Y. Extreme thresholds at − inf and + inf
are added automatically by the code.

coding: An optional argument of numeric or character vector form which is only required as
an input if the dependent variable does not use an incremental coding from 1 to a value equal
to the number of possible values for the dependent variable Y. This can be used both if the
dependent variable is numeric in the data but not monotonic or with unequal increment, or if
the dependent variable is given in string format.

rows: The optional rows argument already described for the earlier models.

5.3.3 Normally distributed continuous variables

For continuous dependent variables (or ordinal dependent variables that are treated as continuous)
the function apollo_normalDensity is available, which is an implementation of the Normal
probability density function. This implies that the probability of observing the speci�c value
for the dependent variable Y in situation t for person n is given by:

P (Yn,t) =
φ
(
Yn,t−Xn,t−µ

σ

)
σ

, (26)

where Xn,t is the explanatory variable used, µ and σ are the estimated means and standard
deviations, and φ is the standard Normal density function.

For an example using apollo_normalDensity, see the section on hybrid choice models (Section
7.3). The apollo_normalDensity is called as follows:

P[[‘model‘]] = apollo_normalDensity(normalDensitysettings,

functionality)

where the contents of normalDensity_settings now include:
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outcomeNormal: A variable indicating the column in the database which contains the value for
the dependent variable in each observation.

xNormal: A numeric vector containing the explanatory variable used in Equation 26.
mu: The parameter used as the mean for the Normal density.
sigma: The parameter used as the standard deviation for the Normal density.
rows: The optional rows argument already described for the earlier models.

5.4 Discrete-continuous models

While choice modelling is generally best known for the study of the choice between mutually
exclusive alternatives, a large body of research has also looked at the joint choice of multiple
alternatives and the consumption of di�erent quantities of each of these. Especially the family of
multiple discrete continuous extreme value models has received extensive interest in recent years,
and two of these models are implemented in Apollo.

5.4.1 Multiple discrete continuous extreme value (MDCEV) model

The MDCEV model (Bhat, 2008) is a representation of a multiple discrete-continuous decisions
process. Such a process consist of choosing one or more elements from a set of alternatives,
and then choosing a non-negative amount of each of the chosen elements. Examples of such a
process are consumption (what products or services to buy and how much of each), and time
use (what activities to engage with and for how long). More formally, the MDCEV model is
a stochastic implementation of the classical consumer maximization processes, where consumers
allocate resources (e.g. their income) in a way that maximizes their utility. This problem can be
formulated as follows:

Max
xk∀k

K∑
k=1

γk
αk
ψk

((
xk
γk

+ 1

)αk
− 1

)

subject to
K∑
k=1

xkpk = B

(27)

ψk = exp(Vk + εk), (28)

where K is the number of alternatives, xk is the amount consumed of product k, and pk is the unit
price or cost of alternative k, and B is the budget available to the individual for consumption. The
term εk is an independent and identically distributed random disturbance following a Gumbel(0,
σ) distribution. Finally, αk and γk are parameters determining satiation, while Vk determines
each alternative's base utility (i.e. its marginal utility at zero consumption).
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The probability of an observed vector of consumptions is then given by:

P (x1
∗, x2

∗, · · · , xM ∗, 0, · · · , 0)

=
1

p1

1

σM−1

(
M∏
m=1

fm

)(
M∑
m=1

pm
fm

) ∏M
m=1e

Vi/σ(∑K
k=1e

Wk/σ
)M
 (M − 1)!,

(29)

where fi = 1−αi
x∗i+γi

and Wk = Vk +(αk − 1) log(
x∗k
γk

+1)− log(pk), and x
∗
k is the observed (optimum)

consumption of product k.
A revised formulation as shown in Equation 30 is obtained when an outside good is included

among the alternatives. An outside good is a product that is consumed by all individuals in
the sample. The outside good usually represents an aggregate measure of the consumption of
all products that are not of interest for the study. For example, if a study focuses on use of
leisure time, the outside good might be all activities that are not leisure (such as sleeping, work,
travelling, etc.), while the inside goods (i.e. all alternatives that are not the outside good) could
deal with leisure in a more detailed way (e.g. going to the park, hiking, going to the cinema,
meeting friends, etc.).

P (x1
∗, x2

∗, · · · , xM ∗, 0, · · · , 0)

=
1

σM−1

(
M∏
m=1

fm

)(
M∑
m=1

pm
fm

) ∏M
m=1e

Vi/σ(∑K
k=1e

Wk/σ
)M
 (M − 1)!,

(30)

The function apollo_mdcev calculates the loglikelihood of an MDCEV model, using equation
29 if no alternative is labeled outside, and using equation 30 if there is one alternative labeled
outside. An example of a function call, as well as a de�nition of its arguments follow. The
function is called as:

P[[‘model‘]] = apollo_mdcev(mdcev_settings,

functionality)

The list mdcev_settings contains the following objects:

alternatives: Character vector containing the name of all alternatives.
avail: List of availabilities, using the names from alternatives. Each element can be scalar
(0 or 1) or a vector detailing availability for each observation.

continuousChoice: List of continuous consumption, using the names from alternatives.
Each element must be a vector of length N (number of observations) indicating the amount
consumed.

V: A list of length K (i.e. number of alternatives), containing the deterministic part of the base
utility of each alternative. The outside good should have V=0 if included.

alpha: List containing the α parameter for each alternative, using the names from
alternatives.
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gamma: List containing the γ parameter for each alternative, using the names from
alternatives. The outside good should have gamma=0 if included.

sigma: Scalar representing the scale parameter of the error term. If there is no price variation
across products, this should be �xed to 1.

cost: List containing the cost or price of each alternative, using the names from alternatives.
Each element can be a scalar if the price does not change across observations, or a vector of
length equal to the number of observations in the data, detailing the price for each observation.

budget: Vector with the amount of the resource (e.g. money or time) available for each
observation. It must be equal to the total consumption of that observation.

minConsumption: Optional argument, which, if provided, should be a list with as many
elements as alternatives. Each element can be either a scalar or a vector de�ning the minimum
consumption of an alternative if it is consumed.

rows: The optional rows argument already described for the earlier models.

As discussed at length by Bhat (2008), di�erent pro�les exist for normalisation of a MDCEV
model, either using a generic α and alternative-speci�c γ parameters, an α parameter only for
the outside good (and set to zero for others) along with alternative-speci�c γ parameters, or
alternative speci�c α terms with γ = 1 for all goods. In our examples below, we use a generic
α and alternative-speci�c γ parameters. Other pro�les can be implemented by simply changing
which parameters are generic and which are alternative speci�c, and making some α terms equal
to zero, as appropriate.

We include two examples of the MDCEV model on the time use data described in Section 3.4.
The �rst example, Apollo_example_11.r does not include an outside good. We illustrate this in
Figure 18.

We begin by de�ning the names of the alternatives, availabilities and continuous consumptions,
where we turn minutes into hours. We then creating the list of utilities, where, in our example,
these include alternative speci�c constants only, where we �x δhome to zero for identi�cation. This
is followed by the de�nition of a generic α parameter, which is constrained to be below 1 by using
a logistic transform, with α = 1

1+e−αbase
, and the set of γ parameters, where these are alternative-

speci�c in our case. We �nally de�ne the costs, turn the budget into hours, and make the call to
apollo_mdcev. In this example, we also �x sigma to its starting value of 1 in apollo_fixed.

The second example, Apollo_example_12.r, groups together some alternatives to create an
outside good. It also incorporates socio-demographics in the utility function, though not in the
α and γ terms, which is however also possible in Apollo. We illustrate this example in Figure 19.

To create the new activities, we sum some of the activities up after reading in the data, where
we create an outside good by combining time spent travelling with time spent at home. We also
create a generic leisure activity. The remainder of the speci�cation is no di�erent in principle
from that in Figure 19 with the exception of there being an alternative called outside, and with
using more detailed utility functions.

5.4.2 Multiple discrete continuous nested extreme value (MDCNEV) model

The MDCNEV is an extension to the MDCEV model, proposed by Pinjari and Bhat (2010a). It
incorporates correlation between alternatives, in a similar way to the nested logit (NL), where
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Def ine i nd i v i dua l a l t e r n a t i v e s
a l t e r n a t i v e s = c (" dropOff " ,

. . .
" other ")

### Def ine a v a i l a b i l i t i e s
a v a i l = l i s t ( dropOff = 1 ,

. . .
other = 1)

### Def ine cont inuous consumption f o r i nd i v i dua l a l t e r n a t i v e s
cont inuousChoice = l i s t ( dropOff = t_a01 /60 ,

. . .
other = t_a12 /60)

### Def ine u t i l i t i e s f o r i nd i v i dua l a l t e r n a t i v e s
V = l i s t ( )
V[ [ " dropOff " ] ] = delta_dropOff

. . .
V[ [ " other " ] ] = delta_other

### Def ine alpha parameters
alpha = l i s t ( dropOff = 1 /(1 + exp(=alpha_base ) ) ,

. . .
other = 1 /(1 + exp(=alpha_base ) ) )

### Def ine gamma parameters
gamma = l i s t ( dropOff = gamma_dropOff ,

. . .
other = gamma_other )

### Def ine c o s t s f o r i nd i v i dua l a l t e r n a t i v e s
co s t = l i s t ( dropOff = 1 ,

. . .
other = 1)

### Def ine budget
budget = budget /60

### Def ine s e t t i n g s f o r MDCEV model
mdcev_settings <= l i s t ( a l t e r n a t i v e s = a l t e r n a t i v e s ,

a v a i l = ava i l ,
cont inuousChoice = continuousChoice ,
V = V,
alpha = alpha ,
gamma = gamma,
sigma = sigma ,
co s t = cost ,
budget = budget )

### Compute p r o b a b i l i t i e s us ing MDCEV model
P [ [ " model " ] ] = apollo_mdcev ( mdcev_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 18: MDCEV implementation without outside good
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### Load data
database = read . csv (" apollo_time_use_data . csv " , header=TRUE)
database$t_outs ide = rowSums( database [ , c (" t_a01 " , "t_a06 " , "t_a10 " , "t_a11 " , "t_a12 ") ] )
database$t_le i su re = rowSums( database [ , c (" t_a07 " , "t_a08 " , "t_a09 ") ] )

. . .

a p o l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Def ine i nd i v i dua l a l t e r n a t i v e s
a l t e r n a t i v e s = c (" out s ide " ,

. . .
" l e i s u r e ")

### Def ine a v a i l a b i l i t i e s
a v a i l = l i s t ( out s ide = 1 ,

. . .
l e i s u r e = 1)

### Def ine cont inuous consumption f o r i nd i v i dua l a l t e r n a t i v e s
cont inuousChoice = l i s t ( out s ide = t_outs ide /60 ,

. . .
l e i s u r e = t_ l e i s u r e /60)

### Def ine u t i l i t i e s f o r i nd i v i dua l a l t e r n a t i v e s
V = l i s t ( )
V[ [ " out s ide " ] ] = 0
V[ [ " work " ] ] = delta_work + delta_work_FT * occ_ful l_time + delta_work_wknd * weekend
V[ [ " s choo l " ] ] = de l ta_schoo l + delta_school_young * ( age<=30)
V[ [ " shopping " ] ] = delta_shopping
V[ [ " p r i va t e " ] ] = de l ta_pr ivate
V[ [ " l e i s u r e " ] ] = de l t a_ l e i s u r e + delta_leisure_wknd *weekend

### Def ine alpha parameters
alpha = l i s t ( out s ide = 1 /(1 + exp(=alpha_base ) ) ,

. . .
l e i s u r e = 1 /(1 + exp(=alpha_base ) ) )

### Def ine gamma parameters
gamma = l i s t ( out s ide = 1 ,

. . .
l e i s u r e = gamma_leisure )

### Def ine c o s t s f o r i nd i v i dua l a l t e r n a t i v e s
co s t = l i s t ( out s ide = 1 ,

. . .
l e i s u r e = 1)

### Def ine budget
budget = budget /60

### Def ine s e t t i n g s f o r MDCEV model
mdcev_settings <= l i s t ( a l t e r n a t i v e s = a l t e r n a t i v e s ,

a v a i l = ava i l ,
cont inuousChoice = continuousChoice ,
V = V,
alpha = alpha ,
gamma = gamma,
sigma = sigma ,
co s t = cost ,
budget = budget )

### Compute p r o b a b i l i t i e s us ing MDCEV model
P [ [ " model " ] ] = apollo_mdcev ( mdcev_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 19: MDCEV implementation with an outside good
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correlation can be introduced by nesting, i.e. grouping alternatives that are correlated among
them. The implementation of MDCNEV in Apollo allows for only a single level of nesting and
is also only valid for models with an outside good, i.e. a product that is consumed in every
observation. The likelihood function of the model is as follows.

P (x1
∗
, x2
∗
, . . . , xM

∗
, 0, . . . , 0)
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∏
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e

Vi
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, (31)

For a detailed explanation of the values in the equation, see Pinjari and Bhat (2010a).
The apollo_mdcnev function is called as:

P[[‘model‘]] = apollo_mdcev(mdcnev_settings,

functionality)

Aside from the previously de�ned contents in mdcnev_settings, we now have two additional
inputs, namely::

mdcnevNests: A named vector containing the names of the nests and the associated structural
parameters theta. For each theta, we give the name of the associated parameter. Unlike in
apollo_nl, the root is not included for apollo_cnl as only two-level structures are used.
mdcnevStructure: A matrix showing the allocation of alternatives to nests, with one row
per nest and one column per alternative, using the same ordering as in alternatives and
mdcnevStructure.

The example Apollo_example_13.r is a nested version of the model with an outside good used
in Figure 19, i.e. Apollo_example_12.r. The model uses two nests, one for mandatory activities
(work, school, private) and one for optional activities (all others, including the outside good).
In Figure 20, we only show the part of the code that di�ers from the standard MDCEV model.
We de�ne two nests, and assign the appropriate θ parameter to each, where in our example,
theta_optional is further �xed to 1 via apollo_fixed as its estimate was not signi�cantly
di�erent from 1. We then describe the allocation of alternatives to nests using a matrix of ones
and zeros, with one row per nest and one column per alternative, where each alternative falls into
exactly one nest. Finally, we make the call to apollo_mdcnev. For this model, we use scaling of
some of the parameters in model estimation given the earlier �ndings of very diverse scales for the
individual parameters in the corresponding simple MDCEV model, i.e. Apollo_example_12.r.

5.5 Adding new model types

As already mentioned, users of Apollo are not restricted to those models for which functions are
available in the code. Any model that yields a probability for an outcome can be used in the
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .

### Def ine ne s t ing s t ru c tu r e
mdcnevNests = l i s t (mandatory = theta_mandatory ,

op t i ona l = theta_opt ional )

mdcnevStructure = matrix (0 , nrow=length (mdcnevNests ) , nco l=length (V) )
### outs ide work schoo l shopping p r i va t e l e i s u r e
mdcnevStructure [ 1 , ] = c ( 0 , 1 , 1 , 0 , 1 , 0) # mandatory
mdcnevStructure [ 2 , ] = c ( 1 , 0 , 0 , 1 , 0 , 1) # opt i ona l

. . .

mdcnev\_set t ings <= l i s t ( . . .
mdcnevNests = mdcnevNests ,
mdcnevStructure = mdcnevStructure )

P [ [ " model " ] ] = apollo_mdcnev (mdcnev\_sett ings , f u n c t i o n a l i t y )
. . .
}

model = apol lo_est imate ( apollo_beta , apo l lo_f ixed , apo l l o_probab i l i t i e s , apol lo_inputs ,
e s t imate_se t t ing s=l i s t ( s c a l i n g=c ( alpha_base=10,

gamma_work=5,
gamma_school=3,
gamma_leisure=2,
delta_work=4,
de l ta_schoo l=7,
delta_shopping=4,
de l ta_pr ivate=4,
d e l t a_ l e i s u r e =4,
delta_work_wknd=3,
delta_school_young=3,
delta_leisure_wknd=0.3) ) )

Figure 20: MDCNEV implementation and call to apollo_estimate using scaling

code and parameters for the model can be estimated using maximum likelihood. The advantage
of the prede�ned functions is of course that they run a large number of checks to avoid issues
with mis-speci�cation and produce output for di�erent user needs. The level of these checks and
output �exibility that a user implements for new models will vary as a function of the user's needs.

The user has the option of either creating new functions in R that are de�ned outside
apollo_probabilities much in the same way as for example apollo_mnl or to simply code
the probabilities for a model inside apollo_probabilities. An example of the latter approach
is shown in Section 10.4.

Clearly, coding models as separate functions is preferable in terms of reusability as well as code
organisation. Users who are interested in coding their own functions should inspect the code for
some of the implemented functions for guidance, for example using apollo_ol as a simple start.
For user de�ned models to be compatible with Apollo, a number of simple basic requirements
need to be ful�lled. In particular, the function needs to take functionality as an argument to
be able to produce di�erent output depending on the value passed to it for functionality. Not
all possible values discussed for functionality in this manual need to be implemented for new
models, but essential capabilities include the ability to deal with the following four settings for
functionality:

estimate: Return the probabilities for each row in the data, using a vector, matrix or cube
(array) depending on the presence of random coe�cients (cf. Section 6.1).
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validate: Return TRUE if all tests are passed, or TRUE if no tests are implemented.
zero_LL: Return the log-likelihood of the model component with all parameters at zero, set
to NA if not applicable for given model.
output: Same as functionality="estimate".

If the models are to be compatible with random coe�cients, they furthermore need to be able
to produce probabilities as three-dimensional arrays, as discussed in Section 6.1. Additionally,
if the models are components of an overall model from which predictions are to be made (cf.
Section 9.5, then output from the function is also needed with functionality==prediction,
even if returning NA for that model component.
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6 Incorporating random heterogeneity

In this section, we describe how to use the Apollo package to incorporate random coe�cients. We
look �rst at continuous random heterogeneity before looking at discrete mixtures (DM) and latent
class (LC) models, and also a combination of the two. Finally, we discuss multi-core estimation,
which is bene�cial for models with random heterogeneity. In this section, we use the simple binary
public transport route choice SP data described in Section 3.2.

6.1 Continuous random coe�cients

6.1.1 Introduction

The Apollo package allows for a very general use of continuous random coe�cients. The code
works for models allowing for intra-individual mixing (i.e. heterogeneity at the level of individual
choices), inter-individual mixing (i.e. heterogeneity at the level of individual people), as well as a
mixture of the two. For background, we provide a brief recap of the discussions in Hess and Train
(2011) on this topic.

In cross-sectional data, we would have a sample of N individuals, indexed as n = 1, . . . , N ,
where each individual is observed to face only one choice situation. Let βn be a vector of the true,
but unobserved taste coe�cients for consumer n. We assume that βn ∀n is iid over consumers
with density g (β | Ω), where Ω is a vector of parameters of this distribution, such as the mean
and variance. Let jn∗ be the alternative chosen by consumer n, such that Pn (jn∗ | β) gives the
probability of the observed choice for consumer n, conditional on β. The mixed logit probability
of consumer n's chosen alternative is

Pn (jn∗ | Ω) =

∫
β
Pn (j∗n | β) g (β | Ω) dβ. (32)

The log-likelihood function is then given by:

LL (Ω) =
N∑
n=1

ln

(∫
β
Pn (j∗n | β) g (β | Ω) dβ

)
, (33)

Since the integrals do not take a closed form, they are approximated by simulation. The simulated
log-likelihood is:

SLL (Ω) =

N∑
n=1

ln

(
1

R

R∑
r=1

Pn (j∗n | βr,n)

)
. (34)

where βr,n gives the rth draw (out of R) from g(β | Ω) for individual n. Di�erent draws are used
for the N consumers, for a total of NR draws.

When we have multiple observations per individual, we typically make the assumption that
sensitivities vary across people, but stay constant across individuals. We would then have that
the likelihood of the sequence of choices for person n is given by:

Pn (Ω) =

∫
β

Tn∏
t=1

Pn,t
(
j∗n,t | β

)
g (β | Ω) dβ, (35)



Apollo: user manual for version 0.0.7 54

where j∗n,t be the alternative chosen by individual n in choice situation t Note that, since the same
sensitivities apply to all choices by a given consumer, the integration over the density of β applies
to all the consumer's choices combined, rather than each one separately.

The log-likelihood function for the observed choices is then:

LL (Ω) =

N∑
n=1

ln

(∫
β

[
Tn∏
t=1

(
Pn,t

(
j∗n,t | β

))]
g (β | Ω) dβ

)
. (36)

The simulated LL (SLL) is:

SLL (Ω) =
N∑
n=1

ln

(
1

R

R∑
r=1

[
Tn∏
t=1

(
Pn,t

(
j∗n,t | βr,n

))])
. (37)

Note that in this formulation, the product over choice situations is calculated for each draw; the
product is averaged over draws; and then the log of the average is taken. The SLL is the sum over
consumers of the log of the average (across draws) of products. The calculation of the contribution
to the SLL function for consumer n involves the computation of RTn logit probabilities.

Instead of utilising the panel nature of the data, the model could be estimated as if each
choice were from a di�erent consumer. That is, the panel data could be treated as if they were
cross-sectional. The objective function is similar to Equation 33 except that the multiple choice
situations by each consumer are represented as being for di�erent individuals:

LL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(∫
β
Pn,t

(
j∗n,t | β

)
g (β | Ω) dβ

)
, (38)

where the integration across the distribution of taste coe�cients is applied to each choice, rather
than to each consumer's sequence of choices. This function is simulated as:

SLL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(
1

R

R∑
r=1

Pn,t
(
j∗n,t | βr,t,n

))
. (39)

where βr,t,n is the rth draw from g(β | Ω) for choice situation t for individual n. Di�erent draws
are used for the Tn choice situations for consumer n, as well as for the N consumers. Consumer
n's contribution to the SLL function utilises RTn draws of β rather than R draws as in Equation
37, but involves the computation of the same number of logit probabilities as before, namely,
RTn. The di�erence is that the averaging across draws is performed before taking the product
across choice situations.

We now generalise the speci�cation on panel data to include intra-personal taste heterogeneity
in addition to inter-personal heterogeneity. Let βn,t = αn + γn,t where αn is distributed across
consumers but not over choice situations for a given consumer, and γn,t is distributed over choice
situations as well as consumers. That is, αn captures inter-personal variation in tastes while γn,t
captures intra-personal variation. Their densities are denoted as f(α) and h(γ), respectively,12

12The mean of βn is captured in αn such that the mean of γn,t is zero.
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where their dependence on underlying parameters, contained collectively in Ω, is suppressed for
convenience.

The LL function is given by:

LL (Ω) =
N∑
n=1

ln

[∫
α

(
Tn∏
t=1

(∫
γ
Pn,t

(
j∗n,t | α, γ

)
h (γ) dγ

))
f (α) dα

]
. (40)

The two levels of integration create two levels of simulation, which can be speci�ed as:

SLL =

N∑
n=1

ln

[
1

R

R∑
r=1

(
Tn∏
t=1

1

K

K∑
k=1

(
Pn,t

(
j∗n,t | αr,n, γk,t,n

)))]
. (41)

This simulation uses R draws of α for consumer n, along with K Tn draws of γ. Note that, in
this speci�cation, the same draws of γ are used for all draws of α. That is, γk,t,n does not have
an additional subscript for r. The total number of evaluations of a logit probability for consumer
n is equal to RK Tn, compared to RTn when there is only inter-personal variation.

The Apollo package allows the user to incorporate continuous random heterogeneity for all
types of models. In a model using apollo_mnl inside apollo_probabilities, we would thus
obtain a mixed multinomial logit (MMNL) model, while, with a CNL core, i.e. apollo_cnl, we
would have a mixed CNL model. Users can similarly specify and estimate mixed MDCEV models
(an example is included in Apollo_example_17.r, and clearly also hybrid choice structures, as
described in Section 7. It is straightforward to combine continuous random heterogeneity with
deterministic heterogeneity for individual parameters, as shown in our example. There are very
few limits imposed on what parameters can incorporate continuous random heterogeneity, opening
up the use of error components for correlation across alternatives and heteroskedasticity. The
parameters (in the models made available with Apollo for which random heterogeneity is not
allowed are:

� the allocation parameters α in a CNL model
� the σ parameter in a MDCEV model
� the θ parameters in a MDCNEV model

A very �exible implementation is used that minimises the changes in the code that are required
to introduce random coe�cients or to change between the di�erent layers of integration. In
particular, the package works in three dimensions. For a model without continuous random
coe�cients, the likelihood for a model (prior to multiplying across observations for the same
individual) is contained in a column vector of length O, where O is the number of observations
in the data. If we introduce continuous random heterogeneity at the level of individual people,
with multiple choices per person, the likelihood is given by a OxR1 matrix, with one row per
observation, and one column per draw from the random coe�cients, where we use R1 draws per
random coe�cient and per individual. Here, the same draws would be reused across the Tn rows
for a given individual n, meaning that we would have N sets of draws, where N is the number
of individuals. In the presence of additional heterogeneity at the level of individual observations,
the likelihood becomes a cube of dimensions OxR1xR2, where in this third dimension, di�erent
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draws are used across di�erent choices for the same individual. As described by Hess and Train
(2011), a given inter-individual draw is then associated with multiple intra-individual draws. If
only intra-individual heterogeneity is used, the cube collapses to an array of dimensions Ox1xR2,
i.e. a matrix but with columns going into the third dimension rather than second dimension.
Depending on the type of heterogeneity (inter and inter) present in the model, di�erent operations
are required in terms of averaging across draws and multiplying across choices, and we discuss
these in detail in our example below.

6.1.2 Example model speci�cation

In what follows, we show the speci�cation of a MMNL model with various levels of heterogeneity
on the route choice data described in Section 3.2. We specify the utility of alternative j for
individual n in choice situation t as:

Vn,j,t = δj + βTC,n (βV TT,n,tTTn,j,t + TCn,j,t + βV HW,nHWn,j,t + βV CHCHn,j,t) , (42)

where TTn,j,t, TCn,j,t, HWn,j,t and CHn,j,t refer to the travel time, travel cost, headway and
interchanges attributes, respectively, for alternative j in choice situation t for individual n.
The treatment in terms of deterministic and random heterogeneity di�ers across the various
parameters, as we will now explain in turn:

� Alternative speci�c constants (ASC) are included to capture any left-right bias in the
survey, where we set δ2 = 0 for normalisation. No random or deterministic heterogeneity is
incorporated for δ1.

� The travel time coe�cient βTC,n multiplies the entire remainder of the utility function,
meaning that our model produces direct estimates of willingness-to-pay (WTP) measures
through working in WTP space (Train and Weeks, 2005). We use a negative log-uniform
distribution (cf. Hess et al., 2017) for this coe�cient, capturing inter-individual heterogeneity
only, with

βTC,n = −exp
(
alog(βTC) + blog(βTC) · ξtc,n

)
, (43)

where ξtc,n follows a uniform distribution across individuals (but is constant across choices
for the same individual), and alog(βTC) and blog(βTC) are the o�set and range, respectively,
for the Uniform distribution used for the log of βTC .

� The value of travel time parameter βV TT,nt gives a direct estimate of the monetary valuation
of travel time (VTT). We use a very �exible distribution for this coe�cient. We being
with a lognormal distribution at the inter-individual level, but add additional heterogeneity
across choices for the same individual, a semi-non-parametric term to allow for deviation
from the lognormal distribution at the individual level (Fosgerau and Mabit, 2013), and a
deterministic multiplier to allow for di�erences between business and non-business travellers.
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We have:

βV TT,n,t = exp[µlog(βV TT )

+ σlog(βV TT ),inter · ξtt,n
+ σlog(βV TT ),inter,2 · ξ

2
tt,n

+ σlog(βV TT ),intra · ξtt,nt]
· (γV TT,business · xbusiness,n + (1− xbusiness,n)) , (44)

where µlog(βV TT ) is the estimated mean for the log of βV TT , σlog(βV TT ),inter and
σlog(βV TT ),inter,2 are the standard deviation and �rst additional Fosgerau and Mabit (2013)
polynomial term at the inter-individual level, multiplying the inter-individual level standard
normally distributed ξtt,n error term and its square, respectively, and σlog(βV TT ),intra captures
additional intra-individual heterogeneity by multiplying a standard normally distributed
error term which also varies across individual choices, ξtt,nt. Finally γV TT,business is a
multiplier for business travellers, for whom xbusiness,n = 1. The subscript t on βV TT,n,t
re�ects the fact that βV TT is distributed across individuals and across choices.

� The value of headway parameter βV HW,n again follows a lognormal distribution only at the
inter-individual level, but with correlation with the inter-individual heterogeneity in the
value of travel time parameter βV TT,nt, such that:

βV HW,n = exp
(
µlog(βVHW ) + σlog(βVHW ) · ξhw,n + σlog(βVHW ,βV TT ) · ξtt,n

)
, (45)

where ξhw,n again follows a standard Normal distribution across individuals, and where the
reuse of ξtt,n from the βV TT,nt de�nition allows us to capture correlation betwen βV HW,n
and βV TT,nt through the estimate σlog(βVHW ,βV TT ).

� The value of interchanges parameter βV CH is estimated without any heterogeneity, hence
the lack of subscript.

We use this highly complex speci�cation with a view to illustrating both the �exibility of the
code and the ease of implementation of complex models.

6.1.3 Implementation

We explain the implementation of the model from Section 6.1.2 in four simple steps. We do not
revisit obvious steps such as the de�nition of parameters to estimate. The model is implemented in
Apollo_example_16.r, with simpler Mixed Logit models also available in Apollo_example_14.r

and Apollo_example_15.r.

Settings
The �rst step is to set mixing=TRUE in apollo_control. This setting is a requirement for using

continuous random heterogeneity. A user may additionally set nCores to a value larger than 1 in
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apollo_control, a point we return to in Section 6.4. We would thus for example have:

apollo_control = list(modelName = "Apollo_example_16",

modelDescr = "Mixed logit model on Swiss route choice data",

indivID = "ID",

mixing = TRUE,

nCores = 3)

Draws
The second step concerns the generation of draws for random distributions. In our case, we

need to produce uniformly distributed inter-individual draws for ξtc,n, normally distributed inter-
individual draws for ξtt,n and ξhw,n, and normally distributed intra-individual draws for ξtt,n,t.
Draws are generated by Apollo whenever mixing==TRUE in apollo_control, using the settings
de�ned in a list called apollo_draws. This process happens during apollo_validateInputs.
The process used for this is illustrated in Figure 21.

apollo_draws = l i s t (
interDrawsType = "halton " ,
interNDraws = 100 ,
interUni fDraws = c (" draws_tc_inter ") ,
interNormDraws = c (" draws_hw_inter " ," draws_tt_inter ") ,
intraDrawsType = "mlhs " ,
intraNDraws = 100 ,
intraUnifDraws = c ( ) ,
intraNormDraws = c (" draws_tt_intra ")

)

Figure 21: De�ning settings for generation of draws

In apollo_draws, the user needs to create settings for the type of draws, both for inter
(interDrawsType) and intra-individual (intraDrawsType) draws. Seven pre-de�ned types of
draws are available in Apollo, namely:

pmc for pseudo-Monte Carlo draws;
halton for Halton draws Halton (1960);
mlhs for MLHS draws (Hess et al., 2006);
sobol for Sobol draws (Sobol', 1967);
sobolOwen for Sobol draws with Owen scrambling (Owen, 1995);
sobolFaureTezuka for Sobol draws with Faure-Tezuka scrambling (Faure and Tezuka, 2000);
and
sobolOwenFaureTezuka for Sobol draws with both Owen and Faure-Tezuka scrambling

While the type of draws used can di�er between the inter and intra-individual sets of draws,
multiple sets of draws within either category will come from the same type. In our case, we
use Halton draws for the inter-individual draws and MLHS draws for the intra-individual draws.
When using the same type of draws for both inter and intra-individual draws, di�erent parts of
the sequence (e.g. primes for Halton) are used for the two types.
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The user needs to next specify how many draws are to be used per individual for inter-
individual draws, and per observation for intra-individual draws. This is set via interNDraws

and intraNDraws. The number can di�er between these two dimensions of integration. We
use 100 inter-individual draws per parameter and per individual, and 100 intra-individual draws
per parameter and per choice situation. If only inter-individual draws are to be used, then a
setting of intraNDraws = 0 is used, with a corresponding approach for intra-individual draws
only. Alternatively, these settings can be omitted by the user.

Finally, the user needs to de�ne the actual random disturbances or sets of draws, by giving each
set of draws a name which can be used later in the model speci�cation, and by determining whether
the draws are Normally or Uniformly distributed, by including their names in interNormDraws

and interUnifDraws, respectively, in the case of inter-individual draws, and intraNormDraws

and intraUnifDraws, respectively, in the case of inter-individual draws. These two distributions
(standard Normal and Uniform between 0 and 1) are used as the base for any other distributions
later in the code. All the draws in our example follow standard Normal distributions, except
ξtc,n, which comes from a Uniform distribution between 0 and 1. A user can either specify empty
vectors for any settings that are not in use, such as intraUnifDraws = c() in our case, or omit
these settings entirely.

Some users may want additional �exibility to combine di�erent types of draws or to generate
their own draws. This is possible in Apollo by giving the name of a user generated object in
apollo_draws$interDrawsType and/or apollo_draws$intraDrawsType instead of providing one
of the seven speci�c types of draws listed above. Using the example from Figure 21, let us assume
the user wants to provide his/her own draws for inter-individual mixing, but continue to use the
Apollo generated MLHS draws for intra-individual mixing. In that case, the user needs to replace
halton by for example ownInterDraws, where this is a list, with one element per random set
of draws. Each entry in the list needs to have a name, where this same set of names is then
used across interUnifDraws and interNormDraws to instruct the code to either leave the draws
untransformed or apply an inverse Normal CDF. The draws provided in the list ownInterDraws
should thus be uniformly distributed. The user also still needs to specify interNDraws and
intraNDraws. Each element of the list of draws provided by the user (ownInterDraws in our
example) should be a matrix containing the user-generated draws. In the case of inter-individual
draws, each matrix must have one row per individual in the database and interNDraws columns,
while, for intra-individual draws, the matrix must have one row per observation in the database,
and intraNDraws columns.

Random coe�cients
The third step concerns the actual de�nition of those coe�cients in the model that

follow a random distribution. For this, the code includes an additional function de�ned
outside the apollo_probabilities function, namely apollo_randCoeff. Just as with
apollo_probabilities, this is a function that the user does not call but which the user de�nes.

This function takes apollo_beta and apollo_inputs as inputs and generates a new list which
contains the random coe�cients, incorporating any deterministic e�ects too. This step is shown
in Figure 22, where the correspondence with Equations 43 to 45 should be clear. The contents of
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apol lo_randCoef f = func t i on ( apollo_beta , apo l lo_inputs ) {
randcoe f f = l i s t ( )

r andcoe f f [ [ " b_tc " ] ] = =exp ( mu_log_b_tc
+ sigma_log_b_tc_inter * draws_tc_inter )

r andcoe f f [ [ " v_tt " ] ] = ( exp ( mu_log_v_tt
+ sigma_log_v_tt_inter * draws_tt_inter
+ sigma_log_v_tt_inter_2 * draws_tt_inter ^ 2
+ sigma_log_v_tt_intra * draws_tt_intra )

* ( gamma_vtt_business * bus ine s s + ( 1 = bus ine s s ) ) )

r andcoe f f [ [ " v_hw" ] ] = exp ( mu_log_v_hw
+ sigma_log_v_hw_inter * draws_hw_inter
+ sigma_log_v_hw_v_tt_inter * draws_tt_inter )

re turn ( randcoe f f )
}

Figure 22: The apollo_randCoeff function

apollo_randCoeff will vary across model speci�cations, only the �rst line (randCoeff = list())
and �nal line (return(randCoeff)) are to remain as in the example.

Model de�nition
The �nal step consists of adapting the apollo_probabilities function to work with random

coe�cients. This step is in essence the easiest as the writing of the utility functions and
probabilities is equivalent to the approach used in the models without random heterogeneity.
This is thanks to having de�ned the actual random coe�cients in the apollo_randCoeff function
which means that the user can now simply use the elements contained in the randCoeff list.

We illustrate this in Figure 23. As we can see, we still de�ne the model as MNL, as this
is the model structure conditional on the random coe�cients. The only distinction with the
earlier MNL example is that we make calls to two additional functions towards the end of
apollo_probabilities. In the MNL example in Figure 7, we made a call to apollo_panelProd,
which takes the product across choices for the same individual, before preparing the probabilities
for output using apollo_prepareProb. In our MMNL model, the probabilities are however not
now given by a vector with one value per choice task, but a cube with one colum per inter-
individual draw in the second dimension, and one colum per intra-individual draw in the third
dimension. The actual log-likelihood function for our model is thus given by:

L (Ω) =

N∏
n=1

∫
ξtc,n

∫
ξtt,n

∫
ξhw,n

Tn∏
t=1

∫
ξtt,n,t

Pj∗n,tdξtt,n,tdξhw,nd, ξtt,ndξtc,n, (46)

The two layers of integration need to be approximated using numerical simulation, where
di�erent functions are used for simulation at the inter-individual and intra-individual level. These
two functions, apollo_avgIntraDraws and apollo_avgInterDraws are called as:

P = apollo_avgIntraDraws(P,

apollo_inputs,

functionality)
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and

P = apollo_avgInterDraws(P,

apollo_inputs,

functionality)

In our example, we �rst average across intra-individual draws, using apollo_avgIntraDraws.
We then take the product over choices, using apollo_panelProd before averaging across the inter-
individual draws using apollo_avgInterDraws to obtain a column vector once again, with one
row per individual. We �nally call apollo_prepareProb.

apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Function i n i t i a l i s a t i o n : do not change the f o l l ow ing three commands
### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ( )
V[ [ ' a l t1 ' ] ] = asc_1 + b_tc *( v_tt* t t1 + tc1 + v_hw*hw1 + v_ch*ch1 )
V[ [ ' a l t2 ' ] ] = asc_2 + b_tc *( v_tt* t t2 + tc2 + v_hw*hw2 + v_ch*ch2 )

### Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2=1) ,
choiceVar = choice ,
V = V

)

### Compute p r o b a b i l i t i e s us ing MNL model
P [ [ 'model ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Average ac ro s s int ra=i n d i v i dua l draws
P = apollo_avgIntraDraws (P, apol lo_inputs , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Average ac ro s s in t e r=i n d i v i dua l draws
P = apollo_avgInterDraws (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 23: The apollo_probabilities function for a MMNL model

While the example here is for a MMNL model, i.e. a mixture of a MNL kernel, it is similarly
possible to use for example a Mixed Nested Logit model, and in Apollo, this is straightforward by
replacing apollo_mnl with apollo_nl and de�ning appropriate additional arguments.

6.1.4 Estimation

The estimation of a continuous mixed logit model uses the same routine apollo_estimate

as our other models, and the code automatically �nds the draws and random coe�cients in
apollo_inputs. This is illustrated in Figure 24, where we use 3 cores in estimation, and where
the use of a MNL kernel inside the MNL model is made clear by the output.
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> model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Test ing p r obab i l i t y func t i on ( apo l l o_p r obab i l i t i e s )

Overview o f cho i c e s f o r MNL model component :
a l t 1 a l t 2

Times ava i l a b l e 3492.00 3492.00
Times chosen 1734.00 1758.00
Percentage chosen o v e r a l l 49 .66 50 .34
Percentage chosen when ava i l a b l e 49 .66 50 .34

Attempting to s p l i t data in to 3 p i e c e s .
Number o f obse rva t i on s per worker ( thread ) :
worker_1 worker_2 worker_3

1170 1170 1152
1133.3Mb of RAM in use be f o r e s p l i t t i n g .
S p l i t t i n g draws . . . Done . 2199.1Mb of RAM in use .
S p l i t t i n g database . . . Done . 2199.4Mb of RAM in use .
Creat ing workers and load ing l i b r a r i e s . . . Done . 2286.4Mb of RAM in use .
Copying data to workers . . . Done . 2286.6Mb of RAM in use (max was 3704.2Mb)

Sta r t i ng main es t imat ion
I n i t i a l func t i on value : =2406.92
I n i t i a l g rad i ent value :

asc_1 mu_log_b_tc sigma_log_b_tc_inter
=12.818236428 =15.520025045 =7.743425613
mu_log_v_tt sigma_log_v_tt_inter sigma_log_v_tt_inter_2
11.501068457 =0.015208570 11.487185475

sigma_log_v_tt_intra mu_log_v_hw sigma_log_v_hw_inter
0.004143203 33.799592529 =0.013273166

sigma_log_v_hw_v_tt_inter v_ch gamma_vtt_business
0.004037247 44.469883505 5.229098406

i n i t i a l va lue 2406.919551
i t e r 2 value 2383.804709
. . .

Figure 24: Running apollo_estimate for MMNL using 3 cores

6.2 Discrete mixtures and latent class

Apollo o�ers the same degree of �exibility with latent class and discrete mixture models as with
continuous mixture models, with only the α parameters in CNL, the σ parameters in MDCEV
and the θ parameters in MDCNEV needing to be kept non-random.

In a latent class model, heterogeneity is accommodated by making use of separate classes with
di�erent values for the vector β in each class. With S classes, we have S instances of β, say β1 to
βS , with the possibility of some elements staying �xed across some classes. Individual n belongs
to class s with probability πn,s, where 0 ≤ πn,s ≤ 1 ∀s and

∑S
s=1 πn,s = 1.

Let Pi,n,t (βs) give the probability of respondent n choosing alternative i in choice situation t,
conditional on n falling into class s, where Pi,n,t is typically speci�ed as a MNL model, but this
is not a requirement in theory or in Apollo. The unconditional (on s) choice probability is then
given by:

Pi,n,t (β1, . . . , βS) =
S∑
s=1

πn,s Pi,n,t (βs) (47)

In the presence of repeated choice data, it is natural to perform the mixing at the level of individual
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people, and we then have that the probability of the sequence of choices for person n is given by:

Ln (β) =

S∑
s=1

πn,s

Tn∏
t=1

Pj∗n,t (βs) (48)

where β = 〈β1, . . . , βS〉, and where j∗n,t gives the alternative chosen by person n in choice situation
t.

In the most basic version, the class allocation probabilities πn,s are constant across respondents,
i.e. πn,s = πs ∀n. The real �exibility of the model arises when linking class allocation to socio-
demographics, where we use a class allocation model, with typically an underlying logit structure,
such that:

πn,s =
eδs+g(γs,zn)∑S
l=1, e

δl+g(γl,zn)
, (49)

where δs is an o�set, and γs is a vector of parameters capturing the in�uence of the vector of
individual characteristics zn on the class allocation probabilities. For normalisation, δs is �xed to
0 for one of the S classes, as is γs. In a model with constant class allocation probabilities across
individuals, we would only estimate the vector of constants δ.

The focus in our discussion is on latent class models rather than discrete mixtures (cf. Hess
et al., 2007). In a discrete mixture model, we have Sk values for parameter βk, where the number
of possible values Sk can vary across parameters (and can be 1 for some). A weight πn,k,s is

assigned to the sth value for βk for person n, with
∑Sk

s=1 πn,k,s = 1, ∀n, k. We thus have
∑K

k=1 Sk
possible values across the K di�erent β parameters, and each combination is possible in the
model. This e�ectively means that the discrete mixture model can be written as a latent class
model with

∏K
k=1 Sk classes, where, for example, the �rst class might use the �rst value for each of

the coe�cients, and thus have a class allocation probability π∗n,s =
∏K
k=1 πn,k,1. Discrete mixtures

can thus be estimated using software for latent class, including in Apollo, and an example is
given in Apollo_example_19.r. The use of discrete mixture models leads to a larger number
of parameters, as we now have separate πn,k,s for di�erent β parameters, as well as generally
a larger number of overall classes (and hence a more complex likelihood function) given that
S∗ =

∏K
k=1 Sk. Latent class models also provide a more natural way of capturing correlation in

the heterogeneity across di�erent coe�cients.
To illustrate the implementation of latent class models in Apollo, we provide an example on

the Swiss route choice data also used for the Mixed Logit model in Section 6.1.2. We develop
a model with two classes, where all four marginal utility parameters (time, cost, headway and
interchanges) vary across the classes, but where the ASCs are kept �xed across classes. For
the class allocation model, we use two socio-demographic characteristics, namely whether an
individual was on a commute journey or not, and whether they had a car available to them. This
example is implemented in Apollo_example_20.r, where a simpler latent class model without
covariates is available in Apollo_example_18.r.
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The development of a latent class model in Apollo consists of two steps, which we now look
at it turn.

De�ning latent class parameters
We �rst implement a function called apollo_lcPars, which performs a role analagous to

apollo_randCoeff for continuous mixtures. This is thus another function that is not called
by the user but which is developed by the user for the speci�c model that is to be used. Like
apollo_randCoeff, this function takes apollo_beta and apollo_inputs as inputs and generates
a new list which contains the parameters that vary across classes as well as the class allocation
probabilities. The contents of apollo_lcPars will vary across model speci�cations, only the �rst
line (lcPars = list() and �nal line (return(lpars)) are to remain as in the example.

The implementation for our example is shown in Figure 25. We create a list called lcPars

which contains the values for the di�erent parameters across classes, as well as the class allocation
probabilities. As can be seen from Figure 25, we �rst produce one element in the list for each of
the four marginal utility coe�cients. Each one of these elements is a list in itself, and contains
the values for the coe�cients across the two classes. If more classes are to be used, more entries
are added into each one of these lists, where the possibility exists of keeping the values constants
for some parameters across some or all of the classes (in which case the number of values still
needs to be the same as the number of classes). Note that for parameters that are kept constant
across all (i.e. not just some) of the classes, such as the ASCs in our example, there is no need
(though also no harm) to include them in lcPars.

apo l lo_lcPars=func t i on ( apollo_beta , apo l lo_inputs ) {
l c pa r s = l i s t ( )
l c pa r s [ [ " beta_tt " ] ] = l i s t ( beta_tt_a , beta_tt_b )
l c pa r s [ [ " beta_tc " ] ] = l i s t ( beta_tc_a , beta_tc_b )
l c pa r s [ [ " beta_hw " ] ] = l i s t (beta_hw_a , beta_hw_b)
l cpa r s [ [ " beta_ch " ] ] = l i s t ( beta_ch_a , beta_ch_b)

V=l i s t ( )
V[ [ " c lass_a " ] ] = delta_a + gamma_commute_a*commute + gamma_car_av_a* c a r_ava i l a b i l i t y
V[ [ " class_b " ] ] = delta_b + gamma_commute_b*commute + gamma_car_av_b* c a r_ava i l a b i l i t y

mnl_sett ings = l i s t (
a l t e r n a t i v e s = c ( c lass_a=1, class_b=2) ,
a v a i l = 1 ,
choiceVar = NA,
V = V

)
l cpa r s [ [ " pi_values " ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y="raw")

l c pa r s [ [ " pi_values " ] ] = apol lo_f i r stRow ( l cpa r s [ [ " pi_values " ] ] , apo l lo_inputs )

re turn ( l c pa r s )
}

Figure 25: The apollo_lcPars function

We next calculate the class allocation probabilities, i.e. πn,s, ∀n, s. We use a MNL model
for the class allocation probabilities, and thus produce utility functions for the two classes. The
utility for the second class could in our case simply be set to 0 as the parameters are all normalised
to 0 in apollo_fixed. We then use the apollo_mnl function to calculate the probabilities, with
two alternatives which are always both available (hence avail=1). Two points need noting here.
First, unlike in other applications of the in-built functions, we now explicitly use the functionality
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raw when calling apollo_mnl - this ensures that the probabilities are returned for all alternatives,
or in this case all classes. When using raw, we also do not need to de�ne the chosen alternative,
and thus set choiceVar=NA.

At this point, we obtain a value for the probability for the two classes for each row in the
data. However, for the calculation in Equation 48, we require the class allocation probabilities at
the individual rather than observation level, i.e. πn,s. This is achieved by running the additional
function apollo_firstrow on the part of lcPars containing the class allocation probabilities.
This is a general function that can be applied to probabilities, data elements, etc. In particular,
by calling:

x = apollo_firstrow(x,

apollo_inputs)

we replace x by a version where only the �rst entry for each individual is
retained. The object x can be a vector, matrix or cube. In our example, calling
apollo_firstrow(lcPars[["pi_values"]],apollo_inputs) retains the �rst row in each
element of lcPars[["pi_values"]] for each individual.

Model de�nition
We next turn to the calculation of the actual latent class choice probabilities, a process that is

illustrated in Figure 26. As can be seen, we �rst create a generic version of mnl_settings that
contains those settings which will be constant across classes, namely the alternatives, availabilities
and choice variable.

We then incorporate a loop over classes, where we calculate the utilities for the two alternatives
in each class, using the appropriate values for those parameters that vary across classes. In each
class, we then update mnl_settings to use the utilities in that speci�c class, before creating one
element in the P list for each class. The reader will note that in class s, we are using the coe�cients
for that class (e.g. beta_tc[[s]] uses the sth element in beta_tc created in apollo_lcPars),
and the call to apollo_mnl in each class uses the appropriate utilities for that class as these are
updated inside the overall mnl_settings using mnl_settings$V = V in each step of the loop.
In our example, we calculate the within class probabilities using a MNL model, where it would
again also be possible to use di�erent models inside the latent class structure, e.g. Nested Logit.
In preparation for the averaging across classes, we take the product across choices for the same
individual in each class, using apollo_panelProd, in line with Equation 48.

We now have the likelihoods in each class, i.e. for class s, we have Ln,s =
∏Tn
t=1 Pj∗n,t (βs). The

remaining step is to take the weighted average across classes, i.e.
∑S

s=1 πn,sLn,s. This is achieved
by the apollo_lc function, which uses the within class probabilities contained in the S existing
elements of P, multiplies each one by the appropriate class allocation probability in pi_values,
and then sums across classes. This function is called as:

P[["model"]] = apollo_lc(lc_settings,

apollo_inputs,

functionality)
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Def ine s e t t i n g s f o r MNL model component that are g ene r i c a c ro s s c l a s s e s
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2=1) ,
choiceVar = cho i c e

)

### Loop over c l a s s e s
s=1
whi le ( s<=2){

### Compute c l a s s=s p e c i f i c u t i l i t i e s
V=l i s t ( )
V[ [ ' a l t1 ' ] ] = asc_1 + beta_tc [ [ s ] ] * tc1 + beta_tt [ [ s ] ] * t t1 + beta_hw [ [ s ] ] * hw1 + beta_ch [ [ s ] ] * ch1
V[ [ ' a l t2 ' ] ] = asc_2 + beta_tc [ [ s ] ] * tc2 + beta_tt [ [ s ] ] * t t2 + beta_hw [ [ s ] ] * hw2 + beta_ch [ [ s ] ] * ch2

mnl_settings$V = V

### Compute within=c l a s s cho i c e p r o b a b i l i t i e s us ing MNL model
P [ [ s ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P [ [ s ] ] = apollo_panelProd (P [ [ s ] ] , apo l lo_inputs , f u n c t i o n a l i t y )

s=s+1}

### Compute l a t en t c l a s s model p r o b a b i l i t i e s
l c_s e t t i n g s = l i s t ( inClassProb = P, c las sProb=pi_values )
P [ [ " model " ] ] = apo l lo_lc ( l c_se t t ing s , apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 26: Implementing choice probabilities for latent class

The list lc_settings contains two elements, namely:

inClassProb: A list of in class probabilities, i.e. the Ln,s for di�erent classes. These need
to already have all continuous random heterogeneity averaged out and contain one entry per
individual, i.e. having been multiplied across observations for the same individual.

classProb: A list of class allocation probabilities, which can be either scalars (if constant across
people), vectors (if using only deterministic heterogeneity) or matrices or cubes (if including
continuous random heterogeneity in the class allocation probabilities).

The output from this function is the actual latent class model probability in Equation 48 and
is stored in the model component of the list P.

6.3 Combining latent class with continuous random heterogeneity

Apollo also allows users to combine continuous random heterogeneity with latent classes (cf.
Greene and Hensher, 2013). Continuous heterogeneity can be allowed for both in the within-class
probabilities and in the class membership probabilities. Speci�cally, let us assume that the vector
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π is distributed according to f (π | Ωπ) where Ωπ is a vector of parameters, while the vector βs,
which contains the parameters for the within-class model in class s is distributed according to
gs (βs | Ωβs), where Ωβs is a vector of parameters, and where Ωβ = 〈Ωβ1 , ...,ΩβS 〉. We then have:

Ln (Ωπ,Ωβ) =

∫
π

S∑
s=1

πn,s

(∫
βs

Tn∏
t=1

Pj∗n,t (βs) gs (βs | Ωβs) dβs

)
f (π | Ωπ) dπ. (50)

The integration across the distribution for heterogeneity in the within-class model is thus carried
out prior to averaging across classes, while the integration across the distribution for heterogeneity
in the class-allocation model is carried out outside the averaging across classes. For estimation,
this implies averaging across draws in two distinct places, as we will now illustrate.

We extend the model from Section 6.2 by allowing the travel time coe�cient to follow a
negative lognormal distribution, with separate parameters in the two classes. In addition, we
allow the constant in the class allocation model for the �rst class, i.e. δa, to follow a Normal
distribution. The speci�cation of the random parameters is illustrated in Figure 27, and is
available in Apollo_example_21.r.

We have that draws_tt and draws_pi are standard Normal draws de�ned in apollo_draws

(not shown here). We then use a negative Lognormal distribution for tt_a and tt_b, and a Normal
distribution for delta_a. These random time coe�cients are then also used inside apollo_lcPars
when de�ning lcPars[["tt"]], while the randomly distributed delta_a is used when de�ning
V[["class_a"]].

The de�nition of the model probabilities di�ers from that of the simple latent class model
in Figure 26 in only two ways. In particular, as seen in Figure 28, in line with Equation
50, we now average across the random draws in the within class likelihoods via P[[s]]

= apollo_avgInterDraws(P[[s]],apollo_inputs,functionality), after taking the product
across observations for the same individual using apollo_panelProd. This gives one likelihood
for the observed choices for each person within each class. We then perform the weighted
summation across classes using P[["model"]] = apollo_lc(lc_settings, apollo_inputs,

functionality). As pi_values again incorporates random terms, we now have a version of
the combined model likelihood for each draw for each individual. As a �nal step we then average
across the continuous heterogeneity in the class allocation probabilities, using P[["model"]]

= apollo_avgInterDraws(P[["model"]], apollo_inputs, functionality) to again give one
value per person.

6.4 Multi-threading capabilities

Apollo allows for multi-threaded estimation for classical estimation13, leading to signi�cant
estimation speed improvements for some models. This can easily be activated by specifying
the number of threads to use in apollo_control$nCores. The recommended number of threads
is equal to the number of available processor cores in the machine minus one, which can be

13When using Bayesian estimation, the reliance on RSGHB means only single core processing is possible.
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apol lo_randCoef f = func t i on ( apollo_beta , apo l lo_inputs ) {
randcoe f f = l i s t ( )

r andcoe f f [ [ " tt_a " ] ] = =exp ( log_tt_a_mu + log_tt_a_sig*draws_tt )
r andcoe f f [ [ " tt_b " ] ] = =exp ( log_tt_b_mu + log_tt_b_sig*draws_tt )
r andcoe f f [ [ " delta_a " ] ] = delta_a_mu + delta_a_sig *draws_pi

return ( randcoe f f )
}

apo l lo_lcPars = func t i on ( apollo_beta , apo l lo_inputs ) {
l c pa r s = l i s t ( )
l c pa r s [ [ " t t " ] ] = l i s t ( tt_a , tt_b )
l c pa r s [ [ " tc " ] ] = l i s t ( tc_a , tc_b )
l c pa r s [ [ " hw" ] ] = l i s t (hw_a, hw_b)
l cpa r s [ [ " ch " ] ] = l i s t (ch_a , ch_b)

V=l i s t ( )
V[ [ " c lass_a " ] ] = delta_a + gamma_commute_a*commute + gamma_car_av_a* c a r_ava i l a b i l i t y
V[ [ " class_b " ] ] = delta_b + gamma_commute_b*commute + gamma_car_av_b* c a r_ava i l a b i l i t y

mnl_sett ings = l i s t (
a l t e r n a t i v e s = c ( c lass_a=1, class_b=2) ,
a v a i l = 1 ,
choiceVar = NA,
V = V

)
l cpa r s [ [ " pi_values " ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y="raw")

l c pa r s [ [ " pi_values " ] ] = apol lo_f i r stRow ( l cpa r s [ [ " pi_values " ] ] , apo l lo_inputs )

re turn ( l c pa r s )
}

Figure 27: The apollo_randCoeff and apollo_lcPars functions for a latent class model with
continuous random heterogeneity

determined by typing parallel::detectCores() in the R console. The use of multi-threaded
estimation comes with some restrictions.

apollo_probabilities can only access its arguments: In other words, the likelihood can
only use data stored inside apollo_beta and apollo_inputs, where the latter combines
database, apollo_control, draws, apollo_randCoeff and apollo_lcPars. All other
variables created by the user in the global environment before estimation cannot be accessed.
This issue is easily avoided by creating any new variables inside the database object prior to
calling apollo_validateInputs, which is good practice anyway.
Data splitting: The dataset is split among several threads, so statistics such as the mean,
maximum and minimum of variables, among others, will not be reliably calculated during
estimation when using multi-threading. To avoid this issue, any such statistic (for example
the mean income in our MNL example in Section 4.2) need to be calculated before estimation
and saved as a new variable inside database14.
Increased memory consumption: Memory consumption is approximately doubled when
using multi-threading. This is because the dataset and draws (usually the biggest objects

14To illustrate this issue, in our earlier example in Section 4.5.2, we created a variable called
mean_income inside the database, prior to calling apollo_validateInputs, by calling database$mean_income =

mean(database$income). This ensures that with multi-threading, the same mean income would be used in each
core, while, if the variable had been created inside apollo_probabilities, a di�erent mean income would have
been used across cores.
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Def ine s e t t i n g s f o r MNL model component that are g ene r i c a c ro s s c l a s s e s
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2=1) ,
choiceVar = cho i c e

)

### Loop over c l a s s e s
s=1
whi le ( s<=2){

### Compute c l a s s=s p e c i f i c u t i l i t i e s
V=l i s t ( )
V[ [ ' a l t1 ' ] ] = asc1 + tc [ [ s ] ] * tc1 + t t [ [ s ] ] * t t1 + hw [ [ s ] ] * hw1 + ch [ [ s ] ] * ch1
V[ [ ' a l t2 ' ] ] = asc2 + tc [ [ s ] ] * tc2 + t t [ [ s ] ] * t t2 + hw [ [ s ] ] * hw2 + ch [ [ s ] ] * ch2

mnl_settings$V = V

### Compute within=c l a s s cho i c e p r o b a b i l i t i e s us ing MNL model
P [ [ s ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P [ [ s ] ] = apollo_panelProd (P [ [ s ] ] , apo l lo_inputs , f u n c t i o n a l i t y )

### Average ac ro s s in t e r=i n d i v i dua l draws with in c l a s s e s
P [ [ s ] ] = apollo_avgInterDraws (P [ [ s ] ] , apol lo_inputs , f u n c t i o n a l i t y )

s=s+1
}

### Compute l a t en t c l a s s model p r o b a b i l i t i e s
l c_s e t t i n g s = l i s t ( inClassProb = P, c las sProb=pi_values )
P [ [ " model " ] ] = apo l lo_lc ( l c_se t t ing s , apol lo_inputs , f u n c t i o n a l i t y )

### Average ac ro s s in t e r=i n d i v i dua l draws in c l a s s a l l o c a t i o n p r o b a b i l i t i e s
P [ [ " model " ] ] = apollo_avgInterDraws (P [ [ " model " ] ] , apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 28: Implementing choice probabilities for latent class with continuous random
heterogeneity

in memory) need to be duplicated, split, and copied into several threads. Any threads after
the second thread will also increase memory requirements, but to a much lesser extent.
Speed gains are dependent on the model: In general, models using few iterations that
each take a long time will bene�t the most. This applies to models using big datasets or a
large number of draws in the case of mixture models. Marginal speed gains also decrease with
the number of threads used. For small models, speed gains due to multi-threading might be
negligible, or even negative due to overhead.

To help decide how many cores to use, we provide the function apollo_speedTest, which
calculates the loglikelihood function several times using di�erent number of threads and draws,
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and reports both the calculation time and the memory usage. This function is called as:

apollo_speedTest(apollo_beta,

apollo_fixed,

apollo_probabilities,

apollo_inputs,

speedTest_settings)

The �nal argument, speedTest_settings, is optional and allows the user to change the following
settings:

nDrawsTry: A vector with the number of draws to try (default is c(100, 200, 500)). Note
that this may need to be reduced for very complex models if memory issues arise.

nCoresTry: A vector with the number of threads to try (default is to try all cores present in
the machine).

nRep: An integer setting the number of times apollo_probabilities is calculated for each
possible pair of elements from nDrawsTry and nCoresTry (default is 10), ensuring stable
results for the calculation of runtimes.

We illustrate the use of this function in Figure 29, which shows a big bene�t especially by
using a second core.
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> speedTest_settings=list(nDrawsTry = c(50, 75, 100),nCoresTry = 1:3,nRep = 10)

> apollo_speedTest(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, speedTest_settings)

___Draws___ sec /
nCores i n t e r i n t r a prog r e s s LLCall RAM(MB)

1 50 50 . . . . . . . . . . 2 .54 1440.2
2 50 50 . . . . . . . . . . 1 .65 1764.8
3 50 50 . . . . . . . . . . 1 .61 1793.7
1 75 75 . . . . . . . . . . 5 .59 1773.3
2 75 75 . . . . . . . . . . 4 .06 2430.9
3 75 75 . . . . . . . . . . 3 .57 2459.9
1 100 100 . . . . . . . . . . 10 .90 2239.5
2 100 100 . . . . . . . . . . 7 .35 3363.3
3 100 100 . . . . . . . . . . 6 .89 3392.3

Summary o f r e s u l t s ( s ec . per c a l l to LL func t i on )
draws50 draws75 draws100

core s1 2 .5383 5.5874 10.9029
core s2 1 .6472 4.0645 7.3518
core s3 1 .6055 3.5699 6.8887

Figure 29: Running apollo_speedTest
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7 Joint estimation of multiple model components

The use of models made up of several separate components is made possible by the function
apollo_combineModels, which is called as follows:

P = apollo_combineModels(P,

apollo_inputs,

functionality)

This function takes the list P which contains several individual model components and produces
a combined model. There is no limit on the number of subcomponents. The obvious case is
estimation, where, with Ln,m giving the likelihood of model component m for person n, the

overall likelihood for person n is given by Ln =
∏M
m=1 Ln,m (not showing here the presence

of any integration over random terms, which would be carried out outside the product). The
function apollo_combineModels creates the model object inside P as the product across individual
components - when working with multiple model components, the individual components should
thus not be called model themselves.

The most widely used case in recent years of models with multiple components is that of hybrid
choice models. Before we turn to that example, we illustrate the joint estimation capabilities
of Apollo by looking at two simpler cases of combining two models, namely the case of joint
estimation on RP and SP data, and the estimation of best-worst data.

7.1 Joint estimation on RP and SP data

The example Apollo_example_22.r uses the mode choice data used also for the earlier MNL
model (cf. Section 4.5.2) but combines the RP and SP data. To allow for scale di�erences
between the two data sources (Bradley and Daly, 1996; Hensher et al., 1998), we incorporate
separate scale parameters µRP and µSP where the former is kept �xed to 1 for normalisation.

The basic setup is the same as in Section 4.5.2 with the exception that we omit database =

subset(database,database$SP==1) used earlier in Figure 3 as we now utilise the entire sample.
The earlier part of the code remains the same as in Figure 7 and is largely omitted here for
conciseness of presentation - this includes the de�nition of mu_RP and mu_SP in apollo_beta, and
the inclusion of mu_RP in apollo_fixed.

The key di�erences arise in the apollo_probabilities function, where we illustrate this in
Figure 30. The de�nition of the utilities remains the same, with the di�erence that they are now
calculated for all rows in the data, i.e. for RP rows as well as SP rows. In the example used here,
the service quality attributes are coded as zero for the RP data and thus do not enter into the
utility calculation for these rows. Special care is required in datasets where attributes for part of
the data are coded for example as -999. The user can then either calculate the utilities separately
for RP and SP or add additional conditional statements.

We �rst calculate the probabilities for RP choices. The de�nition of mnl_settings di�ers from
that in the SP model in Figure 7 in that we multiply the utilities by the RP scale parameter, µRP ,
e.g. Vi,n,t,RP = µRPVi,n,t, where we use lapply to cycle over the list of utilities. RP probabilities
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should only be calculated for RP rows in the data, and we thus include rows=(RP==1), meaning
that for SP rows in the data, the probability of RP choices is simply �xed to 1 so as not to
contribute to model estimation. We then make the call to apollo_mnl, saving the output not in
P[["model"]] which is reserved for the overall model, but in a subcomponent called P[["RP"]].
For the SP part of the data, we only need to change two components15 in mnl_settings, namely
using lapply(V, "*", mu_SP) instead of lapply(V, "*", mu_RP), and rows = (SP==1) instead
of rows = (RP==1). We then calculate the probabilities for the SP rows in the data.

The probability for the combined model is obtained by multiplying the RP and SP components
together in P[["model"]], which is the component used for estimation. Rather than doing
this manually, we use P = apollo_combineModels(P,apollo_inputs,functionality), as this
function also prepares di�erent output depending on the setting of functionality, allowing the
use of joint models also in prediction, for example. The multiplication of probabilities across all
observations for the same respondent happens after combining the two model components, using
apollo_panelProd.

A subset of the model output is shown in Figure 31. We see that the model reports the
joint log-likelihood as well as the subcomponents for the two separate model components, and we
obtain a scale parameter for the SP data (µSP ) which is signi�cantly larger than 1. It should be
noted that in models with multiple components, the output in terms of diagnostics (cf. Figure 8)
can become quite verbose as this information is reported for each model component, and a user
may thus set noDiagnostics to FALSE in apollo_control. The diagnostics are reported in the
order that the model components appear in the overall structure, in this case RP before SP, with
both being MNL components.

7.2 Joint best-worst model

Many stated choice surveys ask respondents for the most and least preferred alternatives, otherwise
known as best-worst or BW (Lancsar et al., 2013). Although there is evidence that the behaviour
in these two stages is not necessarily symmetrical (Giergiczny et al., 2017), such data is commonly
analysed jointly, using in the simplest form a model where the probability for a given person n in
choice task t is given by:

Pn,t =
eVbn,t∑
j=1 e

Vj,n,t
· e−µwVwn,t∑

j 6=bn,t e
−µwVj,n,t

, (51)

where bn,t is the most preferred alternative for respondent n in choice situation t while wn,t is the
least preferred option. The above speci�cation assumes that the best option is chosen �rst, and
the worst is then chosen from the remaining set of alternatives, where the alternative with the
lowest utility has the highest probability of being chosen (given the multiplication of the utilities
by −1). A scale di�erence between the two stages is allowed for with the estimation of µw.

We illustrate the estimation of best-worst choice models on the drug choice data, using the
same utility speci�cation as in 5.3.1, but looking at the best and worst choice stages only,

15As in previous examples, we do not rewrite the entire mnl_settings but just update individual components
inside it.
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Create a l t e r n a t i v e s p e c i f i c constants and c o e f f i c i e n t s us ing i n t e r a c t i o n s with soc io=demographics
asc_bus_value = asc_bus + asc_bus_shift_female * female
asc_air_value = asc_air + asc_air_shi f t_female * female
asc_rai l_value = asc_ra i l + asc_ra i l_sh i f t_female * female
b_tt_car_value = b_tt_car + b_tt_shi ft_business * bus ine s s
b_tt_bus_value = b_tt_bus + b_tt_shi ft_business * bus ine s s
b_tt_air_value = b_tt_air + b_tt_shi ft_business * bus ine s s
b_tt_rail_value = b_tt_rai l + b_tt_shi ft_business * bus ine s s
b_cost_value = ( b_cost + b_cost_shi ft_business * bus ine s s ) * ( income / mean_income ) ^

↪→ cost_income_elast

### Li s t o f u t i l i t i e s ( be f o r e apply ing s c a l e s ) : these must use the same names as in mnl_settings ,
↪→ order i s i r r e l e v a n t

V = l i s t ( )
V[ [ ' car ' ] ] = asc_car + b_tt_car_value * time_car + b_cost_value *

↪→ cost_car
V[ [ ' bus ' ] ] = asc_bus_value + b_tt_bus_value * time_bus + b_access * access_bus + b_cost_value *

↪→ cost_bus
V[ [ ' a i r ' ] ] = asc_air_value + b_tt_air_value * time_air + b_access * acce s s_a i r + b_cost_value *

↪→ cost_ai r + b_no_fr i l l s * ( s e r v i c e_a i r == 1 ) + b_wifi * ( s e r v i c e_a i r == 2 ) + b_food * (
↪→ s e r v i c e_a i r == 3 )

V[ [ ' r a i l ' ] ] = asc_rai l_value + b_tt_rail_value * t ime_ra i l + b_access * a c c e s s_ra i l + b_cost_value *

↪→ c o s t_ra i l + b_no_fr i l l s * ( s e r v i c e_ r a i l == 1 ) + b_wifi * ( s e r v i c e_ r a i l == 2 ) + b_food * (
↪→ s e r v i c e_ r a i l == 3 )

### Compute p r o b a b i l i t i e s f o r the RP part o f the data us ing MNL model
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=av_car , bus=av_bus , a i r=av_air , r a i l=av_rai l ) ,
choiceVar = choice ,
V = lapp ly (V, "*" , mu_RP) ,
rows = (RP==1)

)

P [ [ 'RP ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Compute p r o b a b i l i t i e s f o r the SP part o f the data us ing MNL model
mnl_settings$V = lapp ly (V, "*" , mu_SP)
mnl_sett ings$rows = (SP==1)

P [ [ ' SP ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Combined model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 30: Joint RP-SP model on mode choice data

where we allow for a di�erence in scale between the two stages. This example is available in
Apollo_example_23.r, where we do not repeat the code showing the speci�cation of the utilities,
which is the same as in Figure 17. The model component for the �rst preference (best) is as in the
exploded logit model. For the worst stage, we make three changes. We �rst adapt the availabilities
by making the alternative chosen as the best alternative in the �rst stage unavailable in the second
stage (assuming sequential choices). We next change the dependent variable to be worst rather
than best, before multiplying the utilities by the negative of µRP , as in Equation 51. Of course,
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> apollo_modelOutput(model)
Model name : Apollo_example_22
Model d e s c r i p t i o n : RP=SP model on mode cho i c e data

LL( f i n a l , whole model ) : =5802.644
LL(RP) : =971.2433
LL(SP) : =4831.4

Est imates :
Estimate Std . e r r . t . r a t i o (0 ) Rob . std . e r r . Rob . t . r a t i o (0 )

asc_car 0 .0000 NA NA NA NA
asc_bus 0.1262 0.2811 0 .45 0 .2618 0 .48
asc_air =0.3960 0.1837 =2.16 0 .1776 =2.23
a s c_ra i l =0.9787 0.1806 =5.42 0 .1774 =5.52
asc_bus_shift_female 0 .1818 0.0647 2 .81 0 .0714 2 .55
asc_air_shi f t_female 0 .1344 0.0455 2 .95 0 .0473 2 .84
asc_ra i l_sh i f t_female 0 .0980 0.0366 2 .67 0 .0384 2 .55
b_tt_car =0.0064 0.0005 =12.62 0.0005 =13.02
b_tt_bus =0.0105 0.0010 =10.94 0.0009 =12.05
b_tt_air =0.0087 0.0015 =5.91 0 .0014 =6.06
b_tt_rai l =0.0038 0.0009 =4.17 0 .0009 =4.29
b_tt_shi ft_business =0.0032 0.0003 =9.25 0 .0003 =9.19
b_acc =0.0106 0.0015 =6.89 0 .0015 =7.23
b_cost =0.0382 0.0025 =15.55 0.0024 =15.78
b_cost_shi ft_business 0 .0167 0.0016 10 .19 0.0015 10 .76
cost_income_elast =0.6131 0.0292 =20.99 0.0297 =20.62
b_no_fr i l l s 0 .0000 NA NA NA NA
b_wifi 0 .5233 0.0430 12 .16 0 .0435 12 .02
b_food 0.2201 0.0308 7 .14 0 .0315 6 .99
mu_RP 1.0000 NA NA NA NA
mu_SP 1.9941 0.1263 15 .79 0 .1225 16 .28

The f o l l ow ing parameters were f i x ed ( they have no std . e r r . ) :
asc_car , b_no_fr i l l s , mu_RP

Overview o f cho i c e s f o r MNL model component :
car bus a i r r a i l

Times a va i l a b l e 778.00 902.00 752.00 874.00
Times chosen 332.00 126.00 215.00 327.00
Percentage chosen o v e r a l l 33 .20 12 .60 21 .50 32 .70
Percentage chosen when ava i l a b l e 42 .67 13 .97 28 .59 37 .41

Overview o f cho i c e s f o r MNL model component :
car bus a i r r a i l

Times a va i l a b l e 5446.00 6314.00 5264.00 6118.00
Times chosen 1946.00 358.00 1522.00 3174.00
Percentage chosen o v e r a l l 27 .80 5 .11 21 .74 45 .34
Percentage chosen when ava i l a b l e 35 .73 5 .67 28 .91 51 .88

Figure 31: On screen output for RP-SP model

the same result could be achieved by making use of the apollo_el function with two stages, using
the best and worst outcomes and a negative scale multiplier for the second stage. We show the
use of two separate components here as this would also allow a user to change the actual utility
function between the best and worst stage by for example allowing for di�erences in individual β
terms going beyond just a generic scale di�erence (by rede�ning the utilities for the worst stage).
This is not possible with apollo_el which allows for scale di�erences only.

7.3 Hybrid choice model

We next turn to the use of Apollo for hybrid choice models (see Abou-Zeid and Ben-Akiva, 2014,
for a recent overview), where we look at a simple implementation of a model with a single latent
variable on the drug choice data described in Section 3.3. We use a dummy coded speci�cation for
the three categorical variables, along with a continuous speci�cation for risk and cost. We specify
a structural model for the latent variable that uses the three socio-demographic characteristics
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .

### Compute p r o b a b i l i t i e s f o r ' best ' cho i c e us ing MNL model
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
choiceVar = best ,
V = V

)
P [ [ ' choice_best ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Compute p r o b a b i l i t i e s f o r 'worst ' cho i c e us ing MNL model
mnl_set t ings$ava i l = l i s t ( a l t 1=(best !=1) , a l t 2=(best !=2) , a l t 3=(best !=3) , a l t 4=(best !=4) )
mnl_sett ings$choiceVar = worst
mnl_settings$V = lapp ly (V,"*" ,=mu_worst )

P [ [ ' choice_worst ' ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Combined model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 32: Best-Worst model on drug choice data

included in the data, and then use this latent variable in the utilities for the two branded
alternatives as well as in the measurement models for the four attitudinal indicators. In our
example, we do not incorporate additional random heterogeneity not linked to the latent variable,
but this is entirely straightforward to do by including additional terms in apollo_randCoeff.
Similarly, it is possible to combine latent variables with latent class structures. Indeed, latent
variables are simply additional random components in a model.

Two di�erent versions of the model are provided. The �rst of these, Apollo_example_24.r
uses an ordered logit model for the indicators, as discussed by Daly et al. (2012b). The second
example, Apollo_example_25.r uses the common simpli�cation of treating the indicators as being
normally distributed. We will now look at these two models in turn.

Speci�cally, we have that the latent variable for individual n is given by:

αn = γ′zn + ηn, (52)

where zn is a vector combining the three socio-demographic variables for individual n, γ is a
vector of estimated parameters capturing the impact of these variables on αn and ηn is a random
disturbance which follows a standard Normal distribution across individuals, i.e. ηn ∼ N (0, 1).
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The utility for alternative j in choice situation t for individual n is given by:

Vj,n,t =
5∑
s=1

βbrands ·
(
xbrandj,n,t == s

)
+

6∑
s=1

βcountrys ·
(
xcountryj,n,t == s

)
+

3∑
s=1

βcharacteristics ·
(
xcharacteristicj,n,t == s

)
+ βside_effects · xside_effectsj,n,t
+ βprice · xpricej,n,t
+ λ · αn · (j ≤ 2) . (53)

For the �rst �ve rows, the same speci�cation as in Section 5.3.1 and Section 7.2 is used, with
dummy coding for the categorical variables and a continuous treatment of risk and price. Finally,
the inclusion of the latent variable, i.e. λ · αn only applies to the �rst two alternatives, i.e. the
branded products. We thus get that the likelihood of the observed sequence of Tn choices for
person n, conditional on β and αn, is given by:

LCn (β, αn) =

Tn∏
t=1

e
Vj∗n,t∑4

j=1 e
Vj,n,t

, (54)

where j∗n,t is the alternative chosen by respondent n in task t.
The latent variable is also used to explain the value of the four attitudinal questions, where

two di�erent speci�cations are used in our example.
With the ordered logit model, we have that:

LIn,ordered (τ, ζ, αn) =

4∏
i=1

(
S∑
s=1

δ(In,i=s)

[
eτi,s−ζiαn

1 + eτi,s−ζiαn
− eτi,s−1−ζiαn

1 + eτi,s−1−ζiαn

])
, (55)

where ζi is an estimated parameter that measures the impact of αn on the attitudinal indicator
Ii, and τi,· is a vector of threshold parameters for this indicator.

With the continuous measurement model, we instead have that:

LIn,normal (σ, ζ, αn) =

4∏
i=1

1√
2πσ2i

e
−(In,i−Īi−ζiαn)

2

2σ2
i (56)

where ζi is an estimated parameter that measures the impact of αn on the attitudinal indicator
Ii, and σi is an estimated standard deviation. By subtracting the mean of the indicator across
the sample, i.e. using In,i − Īi, we avoid the need to estimate the mean of the normal density.
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The combined log-likelihood for the model is then given by:

LL (γ, ζ, τ, β) =

N∑
n=1

log

∫
ηn

LCn (β, αn)LIn,ordered (τ, ζ, α)φ (ηn) dηn, (57)

with the ordered model, where we would replace LIn,ordered (τ, ζ, α) by LIn,normal (σ, ζ, α) for the
continuous measurement model (Equation 56 instead of Equation 55). This log-likelihood function
requires integration over the random component in the latent variable, where this integral is then
approximated using numerical simulation.

For conciseness, we do not here reproduce the obvious parts of the code relating to the
de�nition of parameters or basic settings. In Figure 33, we start by creating 100 inter-individual
standard Normal draws for η based on Halton draws. We then de�ne a single random component
inside apollo_randCoeff, where this is for the latent attitude αn, in line with Equation 52, which
includes deterministic heterogeneity through the inclusion of socio-demographic e�ects.

### Set parameters f o r genera t ing draws
apollo_draws = l i s t (

interDrawsType="halton " ,
interNDraws=100 ,
interUni fDraws=c ( ) ,
interNormDraws=c (" eta ") ,

intraDrawsType= ' ' ,
intraNDraws=0,
intraUnifDraws=c ( ) ,
intraNormDraws=c ( )

)

### Create random parameters
apol lo_randCoef f=func t i on ( apollo_beta , apo l lo_inputs ) {

randcoe f f = l i s t ( )

r andcoe f f [ [ "LV" ] ] = gamma_reg_user* regu lar_user + gamma_university* univers i ty_educated + gamma_age_50*
↪→ over_50 + eta

return ( randcoe f f )
}

Figure 33: Hybrid choice model: draws and latent variable

Figure 34 shows the implementation of the hybrid model in the apollo_probabilities

function for the example with an ordered measurement model, i.e. Apollo_example_24.r. We
create a list P which will in the end have �ve components, namely the probabilities of the
four measurement models and the probabilities from the choice model. We �rst compute the
probabilities for the four ordered logit measurement models, one for each attitudinal statement,
where these explain the values for the attitudinal indicators as a function of the latent variable,
as detailed in Equation 55. For details on the syntax of apollo_ol, refer to 5.3.2. One point to
note here is the inclusion of rows=(task==1) which ensures that the measurement model is only
used once for each attitudinal statement and for each individual, rather than contributing to the
overall model likelihood in each row for that person. This is in line with the rows in the data
being for choice tasks, and the answers to attitudinal questions being repeated in the data in each
row.

We next turn to the calculation of the probabilities for the choice model component of the
hybrid model. The de�nition of alternatives, avail and choiceVar is as before. The core
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apo l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Like l ihood o f i n d i c a t o r s
o l_se t t i ng s1 = l i s t ( outcomeOrdered=att i tude_qua l i ty ,

V=zeta_qual i ty *LV,
tau=c ( tau_quality_1 , tau_quality_2 , tau_quality_3 , tau_quality_4 ) ,
rows=(task==1))

. . .
o l_se t t i ng s4 = l i s t ( outcomeOrdered=attitude_dominance ,

V=zeta_dominance*LV,
tau=c ( tau_dominance_1 , tau_dominance_2 , tau_dominance_3 , tau_dominance_4 ) ,
rows=(task==1))

P [ [ " ind i c_qua l i ty " ] ] = apo l lo_ol ( o l_set t ings1 , f u n c t i o n a l i t y )
. . .
P [ [ " indic_dominance " ] ] = apo l lo_ol ( o l_set t ings4 , f u n c t i o n a l i t y )

### Like l ihood o f cho i c e s
### Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V = l i s t ( )
V[ [ ' a l t1 ' ] ] = ( b_brand_Artemis *( brand_1=="Artemis ") + b_brand_Novum*( brand_1=="Novum")

+ b_country_CH*( country_1=="Switzer land ") + b_country_DK*( country_1=="Denmark") +
↪→ b_country_USA*( country_1=="USA")

+ b_char_standard *( char_1=="standard ") + b_char_fast *( char_1=="f a s t ac t ing ") +
↪→ b_char_double *( char_1=="double s t r ength ")

+ b_risk* s ide_e f f e c t s_1
+ b_price*price_1
+ lambda*LV )

V[ [ ' a l t2 ' ] ] = ( b_brand_Artemis *( brand_2=="Artemis ") + b_brand_Novum*( brand_2=="Novum")
+ b_country_CH*( country_2=="Switzer land ") + b_country_DK*( country_2=="Denmark") +

↪→ b_country_USA*( country_2=="USA")
+ b_char_standard *( char_2=="standard ") + b_char_fast *( char_2=="f a s t ac t ing ") +

↪→ b_char_double *( char_2=="double s t r ength ")
+ b_risk* s ide_e f f e c t s_2
+ b_price*price_2
+ lambda*LV )

V[ [ ' a l t3 ' ] ] = ( b_brand_BestValue *( brand_3=="BestValue ") + b_brand_Supermarket *( brand_3=="Supermarket
↪→ ") + b_brand_PainAway*( brand_3=="PainAway")

+ b_country_USA*( country_3=="USA") + b_country_IND*( country_3=="Ind ia ") + b_country_RUS
↪→ *( country_3=="Russia ") + b_country_BRA*( country_3=="Braz i l ")

+ b_char_standard *( char_3=="standard ") + b_char_fast *( char_3=="f a s t ac t ing ")
+ b_risk* s ide_e f f e c t s_3
+ b_price*price_3 )

. . .

### Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2 =2, a l t 3 =3, a l t 4=4) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2 =1, a l t 3 =1, a l t 4=1) ,
choiceVar = best ,
V = V

)

### Compute p r o b a b i l i t i e s f o r MNL model component
P [ [ " cho i c e " ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Like l ihood o f the whole model
P = apollo_combineModels (P, apol lo_inputs , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Average ac ro s s in t e r=i n d i v i dua l draws
P = apollo_avgInterDraws (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 34: Hybrid choice model with ordered measurement model: de�ning probabilities



Apollo: user manual for version 0.0.7 80

### Load data
database <= read . csv (" apollo_drugChoiceData . csv ")

database$at t i tude_qua l i ty=database$att i tude_qual i ty=mean( database$at t i tude_qua l i ty )
database$at t i tude_ingred i ent s=database$at t i tude_ingred i ent s=mean( database$at t i tude_ingred i ent s )
database$att i tude_patent=database$att i tude_patent=mean( database$att i tude_patent )
database$attitude_dominance=database$attitude_dominance=mean( database$attitude_dominance )

. . .

a p o l l o_p r obab i l i t i e s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

. . .

### Like l ihood o f i n d i c a t o r s
normalDens ity_sett ings1 = l i s t ( outcomeNormal=att i tude_qua l i ty ,

xNormal=zeta_qual i ty *LV,
mu=0,
sigma=sigma_qual ,
rows=(task==1))

normalDens ity_sett ings2 = l i s t ( outcomeNormal=at t i tude_ingred i ent s ,
xNormal=zeta_ingred i ent *LV,
mu=0,
sigma=sigma_ingr ,
rows=(task==1))

normalDens ity_sett ings3 = l i s t ( outcomeNormal=att itude_patent ,
xNormal=zeta_patent *LV,
mu=0,
sigma=sigma_pate ,
rows=(task==1))

normalDens ity_sett ings4 = l i s t ( outcomeNormal=attitude_dominance ,
xNormal=zeta_dominance*LV,
mu=0,
sigma=sigma_domi ,
rows=(task==1))

P [ [ " ind i c_qua l i ty " ] ] = apol lo_normalDensity ( normalDensity_sett ings1 , f u n c t i o n a l i t y )
P [ [ " i nd i c_ ing r ed i en t s " ] ] = apol lo_normalDensity ( normalDensity_sett ings2 , f u n c t i o n a l i t y )
P [ [ " indic_patent " ] ] = apol lo_normalDensity ( normalDensity_sett ings3 , f u n c t i o n a l i t y )
P [ [ " indic_dominance " ] ] = apol lo_normalDensity ( normalDensity_sett ings4 , f u n c t i o n a l i t y )

. . .

}

Figure 35: Hybrid choice model with continuous measurement model: zero-centering indicators
and de�ning probabilities

part of the utility functions is as in Figure 17, with the addition that the latent variable αn is
introduced into the utilities for the �rst two alternatives only, multiplied by a common parameter
(λ), as shown in Equation 53.

The list P now contains �ve individual components, and the call to apollo_combineModels

combines these into a joint model, prior to multiplying across choices for the same individual and
averaging across draws, using the by now well known functions.

In Apollo_example_25.r, we use a continuous measurement model for the indicators. In line
with Equation 56, we wish to avoid the estimation of the means for the latent variable. This is
achieved by zero-centering the indicators, a process that needs to take place at the database level,
prior to the call to apollo_validateInputs to ensure that these new variables are identical across
cores in a multi-core setting. We show this part of the code in Figure 35, along with the part of
apollo_probabilities which changes, which is only the treatment of the indicators, where we
now use the function apollo_normalDensity, with details available in Section 5.3.3.
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8 Bayesian estimation

Apollo allows the user to replace classical estimation by Bayesian estimation, for all models. We
do not provide details here on Bayesian theory but instead refer the reader to Lenk (2014) and
the references therein. Bayesian estimation in Apollo makes use of the RSGHB package, and the
user is referred to the documentation in Dumont and Keller (2019) for RSGHB-speci�c settings.

The key advantage for the user is that Apollo provides a wrapper around RSGHB so that
the syntax in apollo_probabilities does not change when a user moves from classical to
Bayesian estimation. To explain the process, we now look at the estimation of a mixed logit
version of the model from Section 4.5.2, which is included in Apollo_example_26.r. We use
Normal distributions for the three ASCs, negative Lognormal distributions for the time and cost
coe�cients, censored Normal distributions (with negative values �xed to zero) for the wi� and
food parameters, and �xed parameters for all other terms.

apol lo_beta=c ( asc_car = 0 ,
asc_bus = 0 ,
asc_air = 0 ,
a s c_ra i l = 0 ,
asc_bus_shift_female = 0 ,
asc_air_shi f t_female = 0 ,
asc_ra i l_sh i f t_female = 0 ,
b_tt_car = =3,
b_tt_bus = =3,
b_tt_air = =3,
b_tt_rai l = =3,
b_tt_shi ft_business = =3,
b_acc = =3,
b_cost = =3,
b_cost_shi ft_business = 0 ,
cost_income_elast = 0 ,
b_no_fr i l l s = 0 ,
b_wifi = 0 ,
b_food = 0)

apo l l o_f ixed = c (" asc_car " ," b_no_fr i l l s ")

apollo_HB = l i s t (
hbDist = c ( asc_car = "F" ,

asc_bus = "N" ,
asc_air = "N" ,
a s c_ra i l = "N" ,
asc_bus_shift_female = "F" ,
asc_air_shi f t_female = "F" ,
asc_ra i l_sh i f t_female = "F" ,
b_tt_car = "LN=",
b_tt_bus = "LN=",
b_tt_air = "LN=",
b_tt_rai l = "LN=",
b_tt_shi ft_business = "F" ,
b_acc = "LN=",
b_cost = "LN=",
b_cost_shi ft_business = "F" ,
cost_income_elast = "F" ,
b_no_fr i l l s = "F" ,
b_wifi = "CN+",
b_food = "CN+") ,

gNCREP = 100000 ,
gNEREP = 50000 ,
gINFOSKIP = 500)

Figure 36: Bayesian estimation in Apollo: model settings

The �rst steps in the model de�nition are shown in Figure 36, where we de�ne the individual
coe�cients and their starting values in apollo_beta as before, where we use starting values of -3
for the underlying mean of the Lognormally distributed coe�cients, i.e. the mean of the logarithm
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of the coe�cients. The de�nition of apollo_fixed is also as in the MNL model.
We next create a list called apollo_HB which can contain any of the settings used in RSGHB

(Dumont and Keller, 2019), where we only use a small subset. One further di�erence arises.
RSGHB requires the user to create an element called gdist with a numeric coding for distributions.
Apollo instead requires the user to create a named character vector inside apollo_HB that is
called hbDist and which contains one entry for each of the parameters in apollo_beta, setting
the distribution to use, with the following de�nitions:

"F": non-random (�xed) parameters16;
"N": normally distributed random parameters;
"LN-": negative lognormally distributed random parameters;
"LN+": positive lognormally distributed random parameters;
"CN-": normally distributed random parameters, bounded above at 0;
"CN+": normally distributed random parameters, bounded below at 0; and
"JSB": Johnson SB distributed random parameters.

The entry hbDist is the only compulsory setting when using Bayesian estimation in Apollo.
In our example, we also de�ne three additional settings, namely:

gNCREP: number of burn-in iterations to use prior to convergence (default=100000);
gNEREP: number of iterations to keep for averaging after convergence has been reached
(default=100000); and

gINFOSKIP: number of iterations between printing/plotting information about the iteration
process (default=250)

The apollo_probabilities function is exactly the same as for the MNL model shown
in Figure 7 and is thus not reproduced here. When using Bayesian estimation, the use of
apollo_avgInterDraws and apollo_avgIntraDraws does not apply even in the presence of
random coe�cients. In addition, the call to apollo_panelProd is ignored as RSGHB automatically
groups together observations for the same individual. The inclusion of any of these three
commands however does no harm.

The call to apollo_estimate is made in exactly the same way as with classical estimation.
The estimation process is illustrated in Figure 37 for the text output and Figure 38 for a graphical
output of the chains. In the text output, we show the �rst and �nal iteration, where this also
highlights the way in which RSGHB con�rms the distributions used at the outset.

The post-estimation output from a model using Bayesian estimation is substantially di�erent
from that with classical estimation, and is summarised in Figure 39. The early information on
model name etc is the same as with classical estimation. This is followed by average model �t
statistics across the post burn-in iterations. Next, we have convergence reports for the parameter
chains, where these use the Geweke test (Geweke, 1992). The next four parts of the output look at
summaries of the parameter chains, each time giving the mean and standard deviation across the

16This is also the obvious choice for parameters that are to be kept �xed at their starting values. RSGHB also
allows users to have random parameters where the mean and standard are �xed, please see Dumont and Keller
(2019).
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> model = apollo_estimate(apollo_beta, apollo_�xed, apollo_probabilities, apollo_inputs)

Diagnost i c checks passed . Please review be fo r e proceed ing
===========================================================

. . .
I n i t i a l Log=Like l ihood : =300144.175

===========================================================

Fixed Parameters Star t
asc_bus_shift_female 0 .0
asc_air_shi f t_female 0 .0

asc_ra i l_sh i f t_female 0 .0
b_tt_shi ft_business =0.1

b_cost_shi ft_business 0 .0
cost_income_elast 0 .0

===========================================================

Random Parameters Star t Dist .
asc_bus 0 .0 N
asc_air 0 .0 N

asc_ra i l 0 . 0 N
b_tt_car =3.0 LN=
b_tt_bus =3.0 LN=
b_tt_air =3.0 LN=

b_tt_rai l =3.0 LN=
b_acc =3.0 LN=

b_cost =3.0 LN=
b_wifi 0 .0 CN+
b_food 0 .0 CN+

===========================================================

. . .

===========================================================

I t e r a t i o n : 150000
===========================================================

. . .
Log=Like l ihood : =4662.79949

RLH: 0.5336594011

===========================================================

Fixed Parameters Estimate
asc_bus_shift_female : 0 .350513792
asc_air_shi f t_female : 0 .179325718

asc_ra i l_sh i f t_female : 0 .186593885
b_tt_shi ft_business : =0.007608993

b_cost_shi ft_business : 0 .029969039
cost_income_elast : =0.722956104

===========================================================

Random Parameters Estimate
asc_bus : =1.9398931
asc_air : =1.1445669

a s c_ra i l : =2.2408746
b_tt_car : =4.5583159
b_tt_bus : =4.2736961
b_tt_air : =5.0724452

b_tt_rai l : =6.8548800
b_acc : =4.2750151

b_cost : =2.6319158
b_wifi : 0 .8191816
b_food : 0 .1901212

===========================================================

Time per i t e r a t i o n : 0 .0169 s e c s
Time to complet ion : 0 mins
===========================================================

Estimation complete .

Figure 37: Bayesian estimation in Apollo: estimation process
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Figure 38: Bayesian estimation in Apollo: estimation process (parameter chains)

post burn-in iterations for each parameter, where these results are divided into the non-random
coe�cients, the means for the underlying Normals, and the covariance matrix (split across two
tables, with the mean and standard deviations of each entry in the covariance matrix). Finally,
the output reports the means and standard deviations for the posteriors, where these are for the
actual coe�cients, i.e. taking into account the distributions used, rather than looking at the
underlying Normals. All the values used for these components are also available in the model

object after estimation and can be used for plotting. The use of apollo_saveOutput operates
as before, but if saveEst==TRUE, the code additionally saves the output �les produced by RSGHB,
which can be very large in size (cf. Dumont and Keller, 2019).

In classical estimation, Apollo creates an object estimates in the model list created
after estimation, containing the �nal parameter values. When using Bayesian estimation,
model$estimate is also produced, combining non-random parameters with individual speci�c
posteriors for random parameters. This allows the user to use apollo_prediction and
apollo_llCalc on such outputs, where care is of course required in interpretation of outputs
based on posterior means.
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> apollo_modelOutput(model)

Model run us ing Apollo f o r R, ve r s i on 0 . 0 . 7
www. cmc . l e ed s . ac . uk

Model name : Apollo_example_26
Model d e s c r i p t i o n : HB model on mode cho i c e SP data
Estimation method : H i e r a r ch i c a l Bayes

Average p o s t e r i o r log=l i k e l i h o o d post burn=in =4627.541
Average p o s t e r i o r RLH post burn=in 0.5363667

Chain convergence repor t :
Fixed ( non random) parameters :
asc_bus_shift_female asc_air_shi f t_female asc_ra i l_sh i f t_female

=1.8659 0.4337 =6.3352
. . .

Summary o f parameters cha ins :
Non=random c o e f f i c i e n t s

Mean SD
asc_car 0 .0000 NA
asc_bus_shift_female 0 .4762 0.0953
. . .

Upper l e v e l model r e s u l t s f o r mean parameters f o r under ly ing Normals
Mean SD

asc_bus =1.6887 0.3612
asc_air =0.7266 0.3707
. . .

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (means ac ro s s i t e r a t i o n s )
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l

asc_bus 0.1951 =0.0014 0.0130 =0.0058 0.0252 =0.0088 =0.0035
asc_air =0.0014 0.1760 0.0580 =0.0144 =0.0064 0.0379 =0.0133
. . .

Upper l e v e l model r e s u l t s f o r covar iance matrix f o r under ly ing Normals (SD ac ro s s i t e r a t i o n s )
asc_bus asc_air a s c_ra i l b_tt_car b_tt_bus b_tt_air b_tt_rai l

asc_bus 0.0834 0.0537 0.0537 0.0205 0.0235 0.0475 0.0572
asc_air 0 .0537 0.0958 0.0567 0.0206 0.0220 0.0540 0.0567
. . .

Resu l t s f o r p o s t e r i o r means f o r random c o e f f i c i e n t s
Mean SD

asc_bus =1.6887 0.0273
asc_air =0.7267 0.0459
. . .

Figure 39: Bayesian estimation in Apollo: output (extracts)
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9 Pre and post-estimation capabilities

A large number of additional functions are provided in Apollo to allow the user to analyse the
results after estimation. The outputs from these functions are not saved in the model output
�les, and it is then helpful for a user to dump the additional output to a text �le, for example
using sink(paste(model$apollo_control$modelName,"_additional_output.txt",sep=""),

split=TRUE) which produces a new text �le using the name of the current model. Outputs
in the console are then also written into this text �le, and writing to �le can be stopped via
if(sink.number()>0) sink(). We will now look at these various functions in turn.

9.1 Pre-estimation analysis of choices

With labelled choice data (or even unlabelled data where there may be strong left-right e�ects),
it can be useful to analyse the choices before model estimation to determine whether the
characteristics of individuals choosing speci�c alternatives di�er across alternatives. This is made
possible by the function called apollo_choiceAnalysis, which is called as follows:

apollo_choiceAnalysis(choiceAnalysis_settings,

apollo_control,

database)

where choiceAnalysis_settings has the following contents:

alternatives: A named vector containing the names of the alternatives, as in e.g. an MNL
model.

avail: A list containing one element with availabilities per alternative, as in e.g. an MNL
model, but where reference to database needs to be made given that we are operating outside
apollo_probabilities (cf. Figure 40).

choiceVar: A vector of length equal to the number of observations, containing the chosen
alternative for each observation.

explanators: A dataframe containing a set of variables, one per column and one entry per
choice observation, that are to be used to analyse the choices. This could include explantory
variables describing the alternatives but is most useful for characteristics of the decision
makers. In order to be able to de�ne this object outside apollo_probabilities, reference to
the database again needs to be made(cf. Figure 40).

The function produces a csv �le with the name modelName_choiceAnalysis.csv where
modelName is as de�ned in apollo_control. The �le contains one row per alternative, and three
columns per variable included in explanators. In a given row, i.e. for a given alternative, these
three columns contain the mean value for the given explanatory variable for those choices where
the alternative is not chosen (but available), the mean value where it is chosen, and the p-value
for a two-sample t-test comparing the means in these two groups, where the null hypothesis states
that the di�erence between the means is equal to 0, and the alternative hypothesis says that it is
di�erent from zero. An example application of this function is included in Apollo_example_1.r
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cho i c eAna ly s i s_se t t i ng s <= l i s t (
a l t e r n a t i v e s = c ( car=1, bus=2, a i r =3, r a i l =4) ,
a v a i l = l i s t ( car=database$av_car , bus=database$av_bus , a i r=database$av_air , r a i l=

↪→ database$av_rai l ) ,
choiceVar = database$choice ,
exp lanator s = database [ , c (" female " ," bus ine s s " ," income ") ]

)

apo l l o_cho i ceAna lys i s ( cho i c eAna ly s i s_se t t ing s , apo l lo_contro l , database )

Figure 40: Running apollo_choiceAnalysis

9.2 Reading in a previously saved model object

As mentioned in Section 4.7, the call to apollo_saveOutput (with default settings) saves the
model object in a .rds �le. It is then possible to read this in as a new model object using the
function apollo_loadModel which is called as:

oldModel = apollo_loadModel(modelName)

where modelName needs to be replaced by the name of previously run model (for which the output
was saved in the current directory), where this name needs to be given as a string, i.e. with
quotation marks. The output from this function is then a model object, which in this case is
saved into oldModel. The bene�t of this function is that it is then easy for a user to return to a
previously estimated model and compute additional output with the estimates from that model
and having access to the full covariance matrix without needing to reestimate the model. An
example is included in apollo_example_16.r.

9.3 Calculating model �t for given parameter values

Especially with complex models, it can be useful for testing purposes to calculate the log-likelihood
of the model (and subcomponents) for given parameter values, before or after estimation. This is
made possible by the function apollo_llCalc, which is called as follows:

apollo_llCalc(apollo_beta,

apollo_probabilities,

apollo_inputs)

where we illustrate this in Figure 41 for the case of the hybrid choice model
(Apollo_example_24.r) from Section 7.3. It should be noted that when calling this function, the
format of apollo_beta needs to be compatible with what is used inside apollo_probabilities.
All parameters used inside the model need to be included, with either one value per parameter
(classical estimation) or one value per parameter and per observation (Bayesian estimation).
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> apollo_llCalc(apollo_beta, apollo_probabilities, apollo_inputs)
Updating inputs . . . Done .
Ca l cu la t ing LL o f each model component . . . Done .
$model
[ 1 ] =19734.47

$ ind i c_qua l i ty
[ 1 ] =1505.83

$ ind i c_ ing r ed i en t s
[ 1 ] =1531.451

$indic_patent
[ 1 ] =1543.356

$indic_dominance
[ 1 ] =1465.061

$cho i ce
[ 1 ] =13314.75

Figure 41: Running apollo_llCalc

9.4 Likelihood ratio tests against other models

A core step in many model �tting exercises is the comparison of models of di�erent levels of
complexity. When comparing two models where one model is a more general version of a base
model, i.e. the base model is nested within the general model, a likelihood-ratio test can be
used to compare the two models (cf. Train, 2009, Section 3.8.2.). This test is implemented in the
function apollo_lrTest.

The function apollo_lrTest can either be called to compare two models for which the output
has been saved in earlier runs of Apollo or to compare a model run in the current instance of
R with a model for which the output has been saved. In Figure 42, we illustrate the function
by comparing the MNL model from Section 4.5.2, i.e. Apollo_example_3, and the NL model
from Section 5.1.1, i.e. Apollo_example_5. We show both the version where the outputs for
both models have been saved earlier17 as well as the version where the more general model has
just been run and still exists in the R instance. This function is not suitable when for example
comparing a joint model with two separate models (e.g. RP-SP vs separate RP and SP models)
and the user in that case needs to calculate the LR test manually, which is of course trivial.

> apollo_lrTest("Apollo_example_3", "Apollo_example_5")

Like l ihood r a t i o te s t=value : 120 .94
Degrees o f freedom : 2
L ike l ihood r a t i o t e s t p=value : 0

> apollo_lrTest("Apollo_example_3", model)

Like l ihood r a t i o te s t=value : 120 .94
Degrees o f freedom : 2
L ike l ihood r a t i o t e s t p=value : 0

Figure 42: Running apollo_lrTest

17Note that the output needs to have been saved in the same directory.
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9.5 Model predictions

A core capability of Apollo relates to model application (i.e. prediction) in addition to estimation.
This is implemented in the function apollo_prediction. The function is called as follows:

forecast = apollo_prediction(model,

apollo_probabilities,

apollo_inputs,

modelComponent)

The majority of these arguments have been discussed already. The only additional new argument
is modelComponent, where this is the name of the model component for which predictions are
requested. This argument is required for models with multiple components, and needs to be the
name (string) of one of the elements in the list P used inside apollo_probabilities.

The application of this function to the Apollo_example_3.r model is illustrated in Figure 43,
which also shows how to look at changes in choices following a change in an explanatory variable,
as well as how elasticities can be calculated. Model predictions in Apollo always use database as
an input, whether applying the model to the base data or a forecast scenario. This means that
for looking at the impact of changes to explanatory variables, these changes need to be made in
database, and can then of course be reversed after applying apollo_prediction.

The output of apollo_prediction will depend on the underlying model component. In
particular:

� For MNL, NL, CNL and OL models, apollo_prediction will return the probability of
the chosen alternative, as well as the probability of each alternative at the observation level
(rather than person level). In particular, these models return a list containing one vector
per alternative plus an additional vector for the chosen alternative, where each vector is
as long as the number of observations in the database, contain the probability of that
alternative. In the presence of continuous random heterogeneity, the draws are averaged
out before presenting the results.

� The discrete continuous models MDCEV and MDCNEV do not return probabilities, but instead
expected values of consumption for each alternative at the observation level. In particular,
they return a matrix detailing the expected (continuous) consumption for each alternative,
and a proxy for the probability of consuming each alternative (discrete choice), as well as the
standard deviations for both of these measurements. These outputs are calculated using the
e�cient forecasting method proposed by Pinjari and Bhat 2010b, and its modi�cation for
theMDCNEV model by Calastri et al. 2017. These methods are based on simulation (200
repetitions are used), and can therefore be computationally demanding. The probability of
consuming each alternative is calculated as the percentage of simulation repetitions in which
the alternative is consumed, and is not calculated using an analytical formula. Again, in
the presence of continuous random coe�cients, the results are averaged across draws.

� The EL (exploded logit) and Normal Density models do not return any prediction, as it
is not evident what precise outcome would be the most useful for the biggest share of users.
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> predictions_base = apollo_prediction(model, apollo_probabilities, apollo_inputs)
Running p r ed i c t i o n s from model
> summary(predictions_base)

car bus a i r r a i l chosen
Min . : 0 . 00000 Min . : 0 . 000000 Min . : 0 . 0000000 Min . : 0 . 0 000 Min . : 0 . 005085
1 s t Qu. : 0 . 0 2 8 1 3 1 s t Qu. : 0 . 0 0 3 8 39 1 s t Qu. : 0 . 0 0 01073 1 s t Qu. : 0 . 1 7 8 5 1 s t Qu. : 0 . 3 8 2 0 50
Median : 0 . 19006 Median :0 . 015744 Median :0 .0803034 Median : 0 . 4 434 Median :0 . 628007
Mean :0 . 27800 Mean :0 . 051144 Mean :0 .2174293 Mean : 0 . 4534 Mean :0 . 592764
3 rd Qu. : 0 . 4 6 3 0 7 3 rd Qu. : 0 . 0 4 4 569 3 rd Qu. : 0 . 3 685864 3 rd Qu. : 0 . 7 2 6 8 3 rd Qu. : 0 . 8 1 5 799
Max. : 0 . 99658 Max. : 0 . 999608 Max. : 0 . 9992502 Max. : 0 . 9 994 Max. : 0 . 999608

### Now imagine the cost for rail increases by 10%
> database$cost_rail=1.1*database$cost_rail
> predictions_new = model, apollo_probabilities, apollo_inputs)

### Return to original data
> database$cost_rail=1/1.1*database$cost_rail

### Compute change in probabilities
> change=(predictions_new-predictions_base)/predictions_base
### Not interested in chosen alternative now, so drop last column
> change=change[,-ncol(change)]
>### Look at person 9, who has all 4 modes available
> change[database$ID==9,]

car bus a i r r a i l
[ 1 , ] 0 .09920605 0.09920605 0.09920605 =0.17890617
[ 2 , ] 0 .12886030 0.12886030 0.12886030 =0.05239268
. . .
[ 1 4 , ] 0 .16101011 0.16101011 0.16101011 =0.06258327
>### Look at mean changes for subsets of the data, ignoring NAs
> colMeans(change,na.rm=TRUE)

car bus a i r r a i l
0 .1391721 0.1568854 0.1469683 =0.1894928

> colMeans(subset(change,database$business==1),na.rm=TRUE)
car bus a i r r a i l

0 .1286203 0.1332535 0.1084991 =0.1065921
> colMeans(subset(change,database$business==0),na.rm=TRUE)

car bus a i r r a i l
0 .1444075 0.1688990 0.1641315 =0.2302359

> colMeans(subset(change,(database$income<quantile(database$income,0.25))),na.rm=TRUE)
car bus a i r r a i l

0 .1775089 0.1978315 0.1936918 =0.2787185
> colMeans(subset(change,(database$income>=quantile(database$income,0.25))|(database$income<=quantile(database$income,0.75))), na.rm=TRUE)

car bus a i r r a i l
0 .1391721 0.1568854 0.1469683 =0.1894928

> colMeans(subset(change,(database$income>quantile(database$income,0.75))),na.rm=TRUE)
car bus a i r r a i l

0 .1079734 0.1193161 0.1074423 =0.1364650

>### Own elasticity for rail:
> log(sum(predictions_new[,4])/sum(predictions_base[,4]))/log(1.1)
[ 1 ] =1.340772

>### Cross-elasticities for other modes
> log(sum(predictions_new[,1])/sum(predictions_base[,1]))/log(1.1)
[ 1 ] 1 .049468
> log(sum(predictions_new[,2])/sum(predictions_base[,2]))/log(1.1)
[ 1 ] 1 .343074
> log(sum(predictions_new[,3])/sum(predictions_base[,3]))/log(1.1)
[ 1 ] 0 .8418118

Figure 43: Running apollo_prediction

9.6 Market share recovery for subgroups of data

With labelled choice data (or even unlabelled data where there may be strong left-right e�ects),
it can be useful to test after model estimation how well the choice shares in the data are recovered
by the model. With a full set of ASCs, a linear in attributes MNL model will perfectly recover
market shares at the sample level (see e.g. Train, 2009, Section 2.6.1.). This is however likely not
the case in subsets of the data, and this test can thus be a useful input for model re�nements.
The function apollo_sharesTest is based on the apply tables approach in ALogit (ALogit, 2016),
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and is called as follows:

apollo_sharesTest(model,

apollo_probabilities,

apollo_inputs,

sharesTest_settings)

The list sharesTest_settings has the following components:

alternatives: A named vector containing the names of the alternatives as de�ned by the user,
and for each alternative, giving the value used in the dependent variable in the data. In our
case, these simply go from 1 to 4.

choiceVar: A variable indicating the column in the database which identi�es the alternative
chosen in a given choice situation. In our example, this column is simply called choice. This
is not a character variable (i.e. text) but the name use to identify a column in the database.
As we are now operating outside apollo_probabilities, we need to use database$choice

for example.
subsamples: The list subsamples is an optional input which contains one column for each
subset of the data to be used in the test, where it is possible for a given row to be included in
multiple subsets, i.e. the values across column vectors in subsamples may exceed 1.

modelComponent: The name of the model component for which predictions are requested. This
argument is required for models with multiple components, and needs to be the name (string)
of one of the elements in the list P used inside apollo_probabilities.

The function produces one table per column in subsamples, along with an overall table for the
entire sample. In each table, the code reports the number of times an alternative is chosen in the
data, the number of times the model predicts it to be chosen, the di�erence between prediction
and data, and a t-ratio and p-value for this di�erence. An example application of this function
is included in Apollo_example_3.r. As we can see from Figure 44, in our example, the model
signi�cantly overpredicts the rate at which business travellers choose bus and underpredicts the
rate at which they choose air. A revised model speci�cation may thus incorporate shifts in these
ASCs for business travellers.

9.7 Comparison of model �t across subgroups of data

An additional function is implemented to compare the performance of the estimated model to
predict the chosen alternative for di�erent subsets of the data. The function apollo_fitsTest is
called as follows:

apollo_fitsTest(model,

apollo_probabilities,

apollo_inputs,

fitsTest_settings)

The list fitsTest_settings has the following components:
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> sharesTest_settings = list()
> sharesTest_settings=list()
> sharesTest_settings[["alternatives"]] = c(car=1, bus=2, air=3, rail=4)
> sharesTest_settings[["choiceVar"]] = database$choice
> sharesTest_settings[["subsamples"]] = list(business=(database$business==1),+ leisure=(database$business==0))

> apollo_sharesTest(model,apollo_probabilities,apollo_inputs,sharesTest_settings)
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .

Running share p r ed i c t i on t e s t s

Pred i c t i on t e s t s f o r group : bus ine s s (2310 obse rva t i on s )

car bus a i r r a i l A l l
Times chosen ( data ) 366.000 8 .000 771.000 1165.000 2310
Times chosen ( p r ed i c t i on ) 350.443 24.348 739.725 1195.484 2310
D i f f ( p r ed i c t i on=data ) =15.557 16.348 =31.275 30.484 0
t=r a t i o =1.093 3 .463 =1.846 1 .612 NA
p=value 0 .275 0 .001 0 .065 0 .107 NA

Pred i c t i on t e s t s f o r group : l e i s u r e (4690 obse rva t i on s )

car bus a i r r a i l A l l
Times chosen ( data ) 1580.000 350.000 751.000 2009.000 4690
Times chosen ( p r ed i c t i on ) 1595.563 333.656 782.280 1978.501 4690
D i f f ( p r ed i c t i on=data ) 15 .563 =16.344 31.280 =30.499 0
t=r a t i o 0 .606 =1.075 1 .601 =1.160 NA
p=value 0 .544 0 .282 0 .109 0 .246 NA

Pred i c t i on t e s t s f o r group : Al l data (7000 obse rva t i on s )

car bus a i r r a i l A l l
Times chosen ( data ) 1946.000 358.000 1522.000 3174.000 7000
Times chosen ( p r ed i c t i on ) 1946.006 358.004 1522.005 3173.984 7000
D i f f ( p r ed i c t i on=data ) 0 .006 0 .004 0 .005 =0.016 0
t=r a t i o 0 .000 0 .000 0 .000 0 .000 NA
p=value 1 .000 1 .000 1 .000 1 .000 NA

Figure 44: Running apollo_sharesTest

subsamples: The list subsamples is an optional input which contains one column for each
subset of the data to be used in the test, where it is possible for a given row to be included in
multiple subsets, i.e. the values across column vectors in subsamples may exceed 1.

modelComponent: The name of the model component for which predictions are requested. This
argument is required for models with multiple components, and needs to be the name (string)
of one of the elements in the list P used inside apollo_probabilities.

The function calculates various statistics for the probability for the chosen alternative, as
illustrate in Figure 45 for Apollo_example_3.r, where the last row in the output compares the
mean predicted probability for the chosen alternative in the speci�c subsample compared to the
mean in all other subsamples.

Users need to exercise caution when using this function in the case where the choice set
size varies across individuals in a manner that is correlated with the subgroups as the prediction
performance for individuals with smaller choice sets will be likely to be larger, all else being equal.

9.8 Functions of model parameters and associated standard errors

A key use of estimates from choice models is the calculation of functions of these estimates, for
example in the form of ratios of coe�cients, leading to marginal rates of substitution, and in the
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> fitsTest_settings = list()

> fitsTest_settings[["subsamples"]] = list()
> fitsTest_settings$subsamples[["business"]] = database$business==1
> fitsTest_settings$subsamples[["leisure"]] = database$business==0
> apollo_fitsTest(model,apollo_probabilities,apollo_inputs,fitsTest_settings)
Updating inputs . . . Done .
Running p r ed i c t i o n s from model . . . Done .

Al l data bus ine s s l e i s u r e
Min P( chosen ) 0 .01 0 .01 0 .01
Mean P( chosen ) 0 .59 0 .64 0 .57
Median P( chosen ) 0 .63 0 .67 0 .61
Max P( chosen ) 1 .00 1 .00 1 .00
SD P( chosen ) 0 .27 0 .26 0 .27
mean vs mean o f a l l other NA 0.06 =0.06

Figure 45: Running apollo_fitsTest

case of a cost coe�cient being used as the denominator, willingness-to-pay (WTP) measures. It
is then important to be able to calculate standard errors for these derived measures, where this
can be done sraightforwardly and accurately with the Delta method, as discussed by Daly et al.
(2012a). The function apollo_deltaMethod is implemented for this purpose for a limited number
of operations, and is called as follows:

apollo_deltaMethod(model,

deltaMethod_settings)

The list deltaMethod_settings has the following components:

operation: A character object operation, which determines which function is to be applied
to the parameters. Possible values are:

sum: two-parameter function, with f (β1, β2) = β1 + β2
diff: two-parameter function, with f (β1, β2) = β1 − β2
ratio: two-parameter function, with f (β1, β2) = β1

β2

exp: one-parameter function, with f (β1) = eβ1

logistic: either one-parameter function, with f1 (β1) = eβ1

eβ1+1
and f2 (β1) = 1

eβ1+1
, or two-

parameter function, with f1 (β1, β2) = eβ1

eβ1+eβ2+1
, f2 (β1, β2) = eβ2

eβ1+eβ2+1
, and f3 (β1, β2) =

1
eβ1+eβ2+1

.
lognormal: two-parameter function giving the mean and standard deviation for a
Lognormal distribution on the basis of the mean and standard deviation for the logarithm

of the parameter, i.e. with β = eN(β1,β2), we have f1 (β1, β2) = µβ = eβ1+
β2
2
2 and

f2 (β1, β2) = σβ = µβ
√
eβ

2
2 − 1

parName1: A character object giving the name of the �rst parameter.
parName1: A character object giving the name of the second parameter, optional if
operation=logistic.

multPar1: An optional numerical value used to multiply the �rst parameter, set to 1 if omitted.
multPar2: An optional numerical value used to multiply the second parameter, set to 1 if
omitted.
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An example application of this function is included in Apollo_example_3.r, and is illustrate
in Figure 46 for the car value of travel time, i.e. the ratio between the car travel time and cost
coe�cients (in both minutes and hours) as well as for the di�erence between the car and rail travel
time coe�cients. The values here are all calculated for an individual in the base socio-demographic
group.

> deltaMethod_settings=list(operation="ratio",parName1="b_tt_car",parName2="b_cost")
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t=r a t i o (0 )

Ratio o f b_tt_car and b_cost : 0 .172 0.0097 17 .72

> deltaMethod_settings=list(operation="ratio",parName1="b_tt_car",parName2="b_cost",multPar1 = 60)
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t=r a t i o (0 )

Ratio o f b_tt_car ( mu l t i p l i ed by 60) and b_cost : 10 .3222 0.5826 17 .72

> deltaMethod_settings=list(operation="diff",parName1="b_tt_car",parName2="b_tt_rail")
> apollo_deltaMethod(model, deltaMethod_settings)

Running Delta method computations
Value Robust s . e . Rob t=r a t i o (0 )

D i f f e r en c e between b_tt_car and b_tt_rai l : =0.0061 0.0019 =3.18

Figure 46: Running apollo_deltaMethod

9.9 Unconditionals for random parameters

After model estimation, it may be useful to an analyst to have at their disposal the actual values
used for random coe�cients, especially if these included interactions with socio-demographics or
(non-linear) transforms that may lead to a requirement for simulation to calculate moments (as
in the semi-non-parametric approach of Fosgerau and Mabit 2013 used in Section 6.1.2). We look
separately at continuous random parameters and latent class.

9.9.1 Continuous random heterogeneity

For continuous random coe�cients, the function apollo_unconditionals is called as follows:

unconditionals = apollo_unconditionals(model,

apollo_probabilities,

apollo_inputs)

The function produces a list as output, with one element per random coe�cient, where this
is a matrix for inter-individual draws, and a cube with inter and intra-individual draws. The
outputs from this function can then readily be used for summary statistics or to produce plots.
An example of this is included in apollo_example_16.r, and also illustrated in the discussion of
conditionals in Section 9.10.1.
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9.9.2 Latent class

For latent class models, the function apollo_lcUnconditionals is called as follows:

unconditionals = apollo_lcUnconditionals(model,

apollo_probabilities,

apollo_inputs)

The apollo_lcUnconditionals produces a list which has one element for each model
parameter that varies across classes, where these are given by lists, with one element per class. The
entry for each class could be either a scalar (if �xed coe�cients are used inside the classes), a vector
(if interactions with socio-demographics are used), or a matrix or cube if continuous heterogeneity
is also incorporated. The �nal component in the list produced by apollo_lcUnconditionals is
a list containing the class allocation probabilities, with one element per class, where these could
again be scalars, vectors, matrices or cubes, depending on the extent of heterogeneity allowed for
by the user. An example of this is included in apollo_example_20.r, and also illustrated in the
discussion of conditionals in Section 9.10.2.

9.10 Conditionals for random coe�cients

There is extensive interest by choice modellers in posterior model parameter distributions, as
discussed in Train (2009, chapter 11) for continuous mixture models and Hess (2014) for latent
class. We implement functions for this for both continuous mixed logit and latent class models.

9.10.1 Continuous random coe�cients

Let β give a vector of taste coe�cients that are jointly distributed according to f (β | Ω), where
Ω is a vector of distributional parameters that is to be estimated from the data. Let Yn give the
sequence of observed choices for respondent n (which could be a single choice), and let L (Yn | β)
give the probability of observing this sequence of choices with a speci�c value for the vector β.
Then it can be seen that the probability of observing the speci�c value of β given the choices of
respondent n is equal to:

L (β | Yn) =
L (Yn | β) f (β | Ω)∫

β L (Yn | β) f (β | Ω) dβ
(58)

The integral in the denominator of Equation 58 does not have a closed form solution, such that
its value needs to be approximated by simulation. This is a simple (albeit numerically expensive)
process, with as an example the mean for the conditional distribution for respondent n being
given by:

β̂n =

∑R
r=1 [L (Yn | βr)βr]∑R
r=1 L (Yn | βr)

, (59)
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where βr with r = 1, . . . , R are independent multi-dimensional draws18 with equal weight from
f (β | Ω) at the estimated values for Ω. Here, β̂n gives the most likely value for the various
marginal utility coe�cients, conditional on the choices observed for respondent n.

It is important to stress that the conditional estimates for each respondent follow themselves
a random distribution, and that the output from Equation 59 simply gives the expected value
of this distribution. As such, a distribution of the output from Equation 59 across respondents
should not be seen as a conditional distribution of a taste coe�cient across respondents, but
rather a distribution of the means of the conditional distributions (or conditional means) across
respondents. Here, it is similarly possible to produce a measure of the conditional standard
deviation, given by:

β̃n =

√√√√√∑R
r=1

[
L (Yn | βr)

(
βr − β̂n

)2]
∑R

r=1 L (Yn | βr)
, (60)

with β̂n taken from Equation 59.
The calculation of posteriors for models with continuous random heterogeneity is implemented

in the function apollo_conditionals, which is called as follows:

conditionals = apollo_conditionals(model,

apollo_probabilities,

apollo_inputs)

The function produces a list object with one component per continuous random coe�cient
(element de�ned in apollo_randCoeff). Each of these components is a matrix with one row per
individual, containing the ID for that individual, the mean of the posterior distribution for that
individual for the coe�cient in question, and the standard deviation. As apollo_conditionals
uses the contents of apollo_randCoeff, any socio-demographic interactions included in
apollo_randCoeff will also be included in the calculation for the conditionals, where, if these vary
across observations for the same individual, they will be averaged across observations. Similarly,
any intra-individual random heterogeneity will also be averaged out.

Figure 47 illustrates the use of this function for the value of travel time coe�cient in the
Apollo_example_16.r example, where we show how the conditional means can then for example
also be used in regression analysis against characteristics of the individual, as discussed by Train
(2009, chapter 11), in our case showing a signi�cant impact of income on the conditionals for the
VTT19. We also include a comparison with the unconditionals.

18The term independent relates to independence across di�erent multivariate draws, where the individual
multivariate draws allow for correlation between univariate draws.

19Note that as apollo_conditionals produces one value per individual, we also need to reduce the dimensionality
of the income variable to one per individual, using apollo_firstRow.
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> unconditionals = apollo_unconditionals(model, apollo_probabilities, apollo_inputs)

> conditionals <- apollo_conditionals(model, apollo_probabilities, apollo_inputs)
Your model conta ins int ra=i n d i v i dua l draws which w i l l be averaged over f o r c ond i t i o n a l sFor information: this

function is meant for use only with continuous mixture models, i.e. no latent class .

> mean(unconditionals[["v_tt"]])
[ 1 ] 0 .4190822
> sd(unconditionals[["v_tt"]])
[ 1 ] 0 .4811322

> summary(conditionals[["v_tt"]])
ID post . mean post . sd

Min . : 2439 Min . : 0 . 1 189 Min . : 0 . 0 450
1 s t Qu. : 1 5308 1 s t Qu. : 0 . 2 6 7 4 1 s t Qu. : 0 . 1 2 9 5
Median :18533 Median : 0 . 3 347 Median : 0 . 1 612
Mean :22181 Mean : 0 . 4166 Mean : 0 . 2 003
3 rd Qu. : 2 1948 3 rd Qu. : 0 . 4 6 4 7 3 rd Qu. : 0 . 2 2 3 8
Max. :84525 Max. : 2 . 2 283 Max. : 1 . 4 226

> income_n=apollo_firstRow(database$hh_inc_abs, apollo_inputs)

Cal l :
lm( formula = cond i t i o n a l s [ [ " v_tt " ] ] [ , 2 ] ~ income_n )

Res idua l s :
Min 1Q Median 3Q Max

=0.31612 =0.14816 =0.07318 0.05123 1.78066

Co e f f i c i e n t s :
Estimate Std . Error t value Pr(>| t | )

( I n t e r c ep t ) 3 .506 e=01 2 .696 e=02 13 .01 < 2e=16 ***

income_n 8.628 e=07 3 .048 e=07 2 .83 0.00489 **

===

S i g n i f . codes : 0 '*** ' 0 .001 '** ' 0 .01 ' * ' 0 .05 ' . ' 0 .1 ' ' 1

Res idual standard e r r o r : 0 .2664 on 386 degree s o f freedom
Mult ip le R=squared : 0 .02033 , Adjusted R=squared : 0 .01779
F=s t a t i s t i c : 8 .011 on 1 and 386 DF, p=value : 0 .004892

Figure 47: Running apollo_unconditionals and apollo_conditionals

9.10.2 Latent class

It is similarly possible to calculate a number of posterior measures from latent class models. A
key example comes in the form of posterior class allocation probabilities, where the posterior
probability of individual n for class s is given by:

π̂ns =
πnsLn (βs)

Ln (β, πn)
, (61)

where Ln (βs) gives the likelihood of the observed choices for individual n, conditional on class s.
To explain the bene�t of these posterior class allocation probabilities, let us assume that we

have calculated for each class in the model a given measure ws = βs1
βs2

, i.e. the ratio between the

�rst two coe�cients. Using wn =
∑S

s=1 πnsws simply gives us a sample level mean for the measure
w for an individual with the speci�c observed characteristics of person n. These characteristics (in
terms of socio-demographics used in the class allocation probabilities) will however be common
to a number of individuals who still make di�erent choices, and the most likely value for w for
individual n, conditional on his/her observed choices, can now be calculated as ŵn =

∑S
s=1 π̂nsws.

Finally, it might also be useful to produce a pro�le of the membership in each class. From the
parameters in the class allocation probabilities, we know which class is more or less likely to capture
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individuals who posses a speci�c characteristic, but this is not taking into account the multivariate
nature of these characteristics. Let us for example assume that a given socio-demographic
characteristic zc is used in the class allocation probabilities, with associated parameter γc, and
using a linear parameterisation in Equation 49. We can then calculate the likely value for zc for
an individual in class s as:

ẑcs =

∑N
n=1 π̂nszcn∑N
n=1 π̂ns

, (62)

where we again use the posterior probabilities to take into account the observed choices.
Alternatively, we can also calculate the probability of an individual in class s having a given
value κ for zc by using:

̂P (zcs = κ) =

∑N
n=1 π̂ns (zcn = κ)∑N

n=1 π̂ns
. (63)

The calculation of posteriors for latent class models is implemented in the function
apollo_lcConditionals, which is called as follows:

conditionals = apollo_lcCconditionals(model,

apollo_probabilities,

apollo_inputs)

This function is only applicable for latent class models that do not incorporate additional
continuous random heterogeneity.

The function produces a list object with one component per continuous random coe�cient
(element de�ned in apollo_randCoeff). Each of these components is a matrix with one row per
individual, containing the ID for that individual, the mean of the posterior distribution for that
individual for the coe�cient in question, and the standard deviation.

Figure 48 illustrates the use of this for the Apollo_example_20.r example. We �rst produce
the output from the apollo_unconditionals_lc function to compare to the conditionals later on,
and also calculate the value of travel time (VTT) in each class, e.g. V TTa =

βt,a
βc,a

, where βt,a and
βc,a are the time and cost coe�cients, respectively, in class a. We then calculate the unconditional
VTT obtained by taking the weighted average across classes, where this varies across individuals
as the class allocation probabilities do, i.e. V TTn = πn,aV TTa + πn,bV TTb. We next calculate
the conditional class allocation probabilities using apollo_lcConditionals. As can be seen from
the output, the means of the conditionals is identical to the mean of the unconditionals, but the
range is much wider. Similarly, when we calculate the conditional VTT, we see a wider range for
that too.

We �nally use the conditional class allocation probabilities to calculate some posterior statistics
for class membership. To do this, we �rst retain only one value for the two socio-demographic
variables commute and car_availability for each individual (by using apollo_firstRow before
using the formula in Eq. 62 to calculate the most likely value for these two variables for
individuals in the two classes, given the posterior class allocation probabilities. These posteriors
class allocation probabilities can of course then also be used in regression.
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> unconditionals=apollo_lcUnconditionals(model, apollo_probabilities, apollo_inputs)

> vtt_class_a=unconditionals[["beta_tt"]][[1]]/unconditionals[["beta_tc"]][[1]]
> vtt_class_b=unconditionals[["beta_tt"]][[2]]/unconditionals[["beta_tc"]][[2]]
> vtt_unconditional=unconditionals[["pi_values"]][[1]]*vtt_class_a+unconditionals[["pi_values"]][[2]]*vtt_class_b

> conditionals=apollo_lcConditionals(model, apollo_probabilities, apollo_inputs)
> summary(conditionals)

Class 1 Class 2
Min . : 0 . 000003 Min . : 0 . 0 000
1 s t Qu. : 0 . 1 5 1 5 59 1 s t Qu. : 0 . 1 2 0 9
Median :0 . 381015 Median : 0 . 6 190
Mean :0 . 483881 Mean : 0 . 5 161
3 rd Qu. : 0 . 8 7 9 0 99 3 rd Qu. : 0 . 8 4 8 4
Max. : 1 . 000000 Max. : 1 . 0 000

> summary(as.data.frame(unconditionals[["pi_values"]]))
c lass_a class_b

Min . : 0 . 3 924 Min . : 0 . 4 140
1 s t Qu. : 0 . 4 4 6 7 1 s t Qu. : 0 . 4 1 4 0
Median : 0 . 4 467 Median : 0 . 5 533
Mean : 0 . 4 839 Mean : 0 . 5 161
3 rd Qu. : 0 . 5 8 6 0 3 rd Qu. : 0 . 5 5 3 3
Max. : 0 . 5 860 Max. : 0 . 6 076

> vtt_conditional=conditionals[,1]*vtt_class_a+conditionals[,2]*vtt_class_b

> summary(vtt_unconditional)
Min . 1 s t Qu. Median Mean 3rd Qu. Max .

0 .4221 0.4544 0.4544 0.4766 0.5374 0.5374
> summary(vtt_conditional)

Min . 1 s t Qu. Median Mean 3rd Qu. Max .
0 .1885 0.2787 0.4153 0.4766 0.7118 0.7838

> commute_n = apollo_firstRow(database$commute,apollo_inputs)
> car_availability_n = apollo_firstRow(database$car_availability,apollo_inputs)

> post_commute=colSums(commute_n*conditionals)/colSums(conditionals)
> post_car_availability=colSums(car_availability_n*conditionals)/colSums(conditionals)

> post_commute
Class 1 Class 2

0.2629875 0.3077349
> post_car_availability

Class 1 Class 2
0.4465377 0.3154211

Figure 48: Running apollo_lcUnconditionals and apollo_lcConditionals

9.11 Summary of results for multiple models

It is often useful to produce an output �le combining the estimates from multiple models run on
the same data. This is facilitated by the function apollo_combineResults. This function allows
the user to combine the results from a number of models (which can be larger than 2) for which
the outputs have all been saved in the same directory. The function is called as follows:

apollo_combineResults(combineResults_settings)

where the list combineResults_settings has the following contents:

modelNames: a vector of model names, e.g. c("Apollo_example_1", "Apollo_example_2",

"Apollo_example_3"). If this argument is not given, all models within the directory are used.
printClassical: if set to TRUE, the code will save classical standard errors as well as robust
standard errors, computed using the sandwich estimator (cf. Huber, 1967). This setting then
also a�ects the reporting of t-ratios and p-values (default is FALSE).
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printPVal: if set to TRUE, p-values are saved (default is FALSE).
printT1: if set to TRUE, t-ratios against 1 are saved in addition to t-ratios against 0 (default
is FALSE).

estimateDigits: number of digits used for estimates (default set to 4).
tDigits: number of digits used for t-ratios (default set to 2).
pDigits: number of digits used for p-values (default set to 2).

The function produces a csv �le with the name model_comparison_time where time is a
numerical value de�ned by the current date and time. The �le contains for each model the name,
the number of individuals and observations, the number of estimated parameters, as well as four
model �t statistics, namely the �nal log-likelihood, the adjusted ρ2 measure, the AIC and the
BIC. Note that not all these measures will be reported for all models, e.g. ρ2 is not calculated for
models with continuous components. The actual model outputs are then included in a number of
columns where this depends on the level of detail requested by the user as described above (e.g.
including classical t-ratios).

The function can be called as apollo_combineResults(), i.e. without any arguments.
In that case, the default settings are used for all arguments, and all model �les within the
directory are combined into the output. An example of how to call this function is included
in apollo_example_6.r, combining the MNL, NL and CNL results.
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10 Extensions

10.1 Iterative coding of utilities for large choice sets

In the examples shown in this manual, the user codes the utilities of all alternatives one by
one. With very large choice sets, this may not be practical, and a user may create the utilities
recursively, for example. We illustrate this in Figure 49 for a simple example, where we have 100
alternatives, and where the utility includes two attributes (x1 and x2). Values for these exist in
the data for each alternative, with for example x1_1 being the value for the �rst attribute for the
�rst alternative, and there is also a vector of availabilities for each alternative, e.g. av1 for the
�rst alternative.

J = 100
V = l i s t ( )
f o r ( j in 1 : J ) V [ [ paste0 (" a l t " , j ) ] ] = b1*database [ , paste0 ("x1_" , j ) ] + b2*database [ , paste0 ("x2_" , j ) ]

mnl_sett ings = l i s t (
a l t e r n a t i v e s = setNames ( 1 : J , names (V) ) ,
a v a i l = setNames ( database [ , paste0 (" av " , 1 : J ) ] , names (V) ) ,
choiceVar = choice ,
V = V

)

Figure 49: De�ning utilities for large choice sets

10.2 Starting value search

In classical estimation, convergence to the global maximum of the likelihood function is not
guaranteed by any optimization algorithm. While this is not a problem for simple linear in
attributes MNL models due to their concave likelihood function, it might be for other more
complex models, such as mixed logit or latent class models. A popular approach to reduce
the probability of reaching a poor local maximum is starting the optimization process from
several di�erent candidate points (i.e. sets of parameters), and keep the solution with the
highest likelihood. However, this approach is very computationally intensive. To reduce its
cost, algorithms have been proposed to dynamically eliminate unpromising candidates.

The function apollo_searchStart implements a simpli�ed version of the algorithm proposed
by Bierlaire et al. (2010), which is called as follows:

apollo_beta = apollo_searchStart(apollo_beta,

apollo_fixed,

apollo_probabilities,

apollo_inputs,

searchStart_settings)

The function returns an updated list of starting values. The list searchStart_settings has the
following contents:

apolloBetaMin: a vector of the minimum possible value for each parameter (default is
apollo_beta-0.5).
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apolloBetaMax: a vector of the maximum possible value for each parameter (default is
apollo_beta+0.5).

nCandidates: the number of initial candidates (default is 100).
maxStages: the maximum number of iterations of the algorithm, i.e. maximum number of
times the algorithm jumps from step 6 to 3 described below (default is 10).

bfgsIter: the maximum number of BFGS iterations to apply to each candidate in each
iteration of the main algorithm (default is 10).

smartStart: if TRUE, the Hessian of apollo_probabilities is calculated at apollo_beta, and
the initial candidates are drawn with a higher probability from the area where the Hessian
indicates an improvement in the likelihood. This adds a signi�cant amount of time to the
initialization of the algorithm (default is FALSE).

dTest: the tolerance of test 4.2 described below (default is 1).
gTest: the tolerance for the gradient in test 4.3 described below (default is 10−3).
llTest: the tolerance for the LL in test 4.3 described below (default is 3).

The main di�erence in our implementation lies in the fact that apollo_searchStart uses only
two out of three tests on the candidates described by Bierlaire et al. (2010). The implemented
algorithm has the following steps.

1. Randomly draw nCandidates candidates from an interval given by the user.
2. Label all candidates with a valid log-likelihood (LL) as active.
3. Apply bfgsIter iterations of the BFGS algorithm to each active candidate.
4. Apply the following tests to each candidate:

(a) Has the BGFS search converged?
(b) Are the candidate parameters after BFGS closer than dTest from any other candidate

with higher LL?
(c) Is the LL of the candidate after BFGS further than distLL from a candidate with

better LL, and is its gradient smaller than gTest?

5. Mark any candidates for which at least one of these tests is passed as inactive.
6. Go back to step 3 for he remaining candidates.

The performance of the function varies across models and datasets and depends on the settings
used. In particular, we advise to adjust the bfgsIter, dTest, distLL and gTest parameters to
suit each user's particular model characteristics, as their default values might not be suitable for
some model speci�cations. The running of the function is illustrated in Figure 50 for example
apollo_example_20.r, where only a small part of the output is shown.

10.3 Out of sample �t

A common way to test for over�tting of a model is to measure its �t on a sample not used during
estimation, i.e. measuring out-of-sample �t. A simple way to do this is splitting the available
dataset into two parts: an estimation sample, and a validation sample. The model of interest
is estimated using only the estimation sample, and then those estimated parameters are used
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> apollo_beta=apollo_searchStart(apollo_beta, apollo_fixed,apollo_probabilities, apollo_inputs)

. . .

I n i t i a l i z i n g c l u s t e r .
Creat ing i n i t i a l s e t o f 100 candidate va lues .
Ca l cu la t ing LL o f cand idates 0% . . . . 5 0% . . . . . 1 0 0%

Stage 1 , 100 a c t i v e cand idates .
Est imating 20 BFGS i t e r a t i o n ( s ) f o r each a c t i v e candidate .
Candidate . . . . . . LLstart . . . . . LL f in i sh . . . . . GradientNorm . . . Converged

1 =1756 =1562 78.273 0
2 =1804 =1551 350.796 0

. . .
100 =1867 =1562 8 .991 0

Candidate 1 dropped .
Fa i l ed t e s t 1 aga in s t 22 26 29 40 44 46 58 72 75 78 91 95 97 98 100

. . .
Candidate 100 dropped .
Fa i l ed t e s t 1 aga in s t 29 40 44 72 91 95 98

Best candidate so f a r (LL==1551.2)

. . .

Stage 2 , 20 a c t i v e cand idates .
Est imating 20 BFGS i t e r a t i o n ( s ) f o r each a c t i v e candidate .
Candidate . . . . . . LLstart . . . . . LL f in i sh . . . . . GradientNorm . . . Converged

2 =1551 =1549 0 .012 1
. . .

92 =1565 =1552 191.749 0

. . .

Stage 4 , 5 a c t i v e cand idates .
Est imating 20 BFGS i t e r a t i o n ( s ) f o r each a c t i v e candidate .
Candidate . . . . . . LLstart . . . . . LL f in i sh . . . . . GradientNorm . . . Converged

15 =1579 =1559 23.317 0
42 =1549 =1549 1 .595 1
61 =1562 =1562 0 .243 1
76 =1562 =1562 0 1
77 =1599 =1578 920.526 0

Candidate 77 dropped .
Fa i l ed t e s t 1 aga in s t 76
Fa i l ed t e s t 2 aga in s t 76

Best candidate so f a r (LL==1549.3)
[ , 1 ]

asc_1 0.0724
asc_2 0.0000
beta_tt_a =0.0701
beta_tt_b =0.0709
beta_tc_a =0.1101
beta_tc_b =0.3758
beta_hw_a =0.0437
beta_hw_b =0.0383
beta_ch_a =0.7840
beta_ch_b =1.8961
delta_a =0.1457
gamma_commute_a 0.2682
gamma_car_av_a =0.0247
delta_b 0.0000
gamma_commute_b 0.0000
gamma_car_av_b 0.0000

Figure 50: Running apollo_searchStart

to measure the �t of the model (e.g. the log-likelihood of the model) on the validation sample.
Doing this with only one validation sample may however lead to biased results, as a particular
validation sample need not be representative of the population. One way to minimise this issue is
to randomly draw several pairs of estimation and validation samples from the complete dataset,
and apply the procedure to each pair. This also allows the calculation of a con�dence interval for
the out-of-sample measure of �t.
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The function apollo_outOfSample implements the process described above. It is called as
follows:

apollo_outOfSample(apollo_beta,

apollo_fixed,

apollo_probabilities,

apollo_inputs,

estimate_settings, )

outOfSample_settings)

The only new input here is outOfSample_settings, which has the following contents:

nRep: Number of times a di�erent pair of estimation and validation sets are to be extracted
from the full database (default is 10).

validationSize: Size of the validation sample. It can be provided as a fraction of the whole
database (number between 0 and 1), or a number of individuals (number bigger than 1). The
splitting of the database is done at the individual level, not at the observation level (default
is 0.1).

apollo_outOfSample saves to disk a �le called name_outOfSample.csv, where name is the
name of the model as de�ned in apollo_control. This �le contains the estimates from each of
the nRep estimation runs, as well as the estimation and out of sample log-likelihoods. In addition,
the function prints to screen the per observation log-likelihood for each subsample, both for the
estimation sample and the holdout sample. The running of the function is illustrated in Figure
51 for example apollo_example_20.r

10.4 Expectation-maximisation (EM) algorithm

Apollo allows the user to estimate models using Expectation - Maximisation (EM) algorithms.
These are iterative algorithms were the updating of the parameters is usually achieved through
the maximization of a simpli�ed version of the model likelihood function. EM algorithms do not
provide standard error estimates for the parameters. To obtain them, a Maximum Likelihood
estimation with the EM estimated parameters as the starting values is typically run afterwards.
This guarantees quick convergence and standard errors for all parameters. For a detailed discussion
of EM algorithms, see Train (2009, ch. 14).

The precise steps of these algorithms change depending on the kind of model, making them
hard to generalize and implement in a �exible way. It is thus up to the user to write the speci�c
EM algorithm required by the desired model. Nevertheless, we provide three examples covering
the most common choice models estimated using EM, so that a user can easily modify them to
their own needs.

10.5 LC model without covariates in the allocation function

In this subsection, we describe the EM estimation of a choice model with S di�erent classes. The
conditional choice probability of class s (i.e. the in-class probability) is determined by a MNL
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> apollo_outOfSample(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)

Number o f i n d i v i dua l s f o r e s t imat ion : 349
Number o f i n d i v i dua l s f o r f o r e c a s t i n g : 39
Total number o f i n d i v i du a l s in sample : 388

Preparing loop .

Est imation cyc l e 1
Using 3141 obse rva t i on s
i n i t i a l va lue 1586.454363
i t e r 2 value 1519.056289
i t e r 3 value 1505.848890
i t e r 4 value 1502.240609
. . .

Est imation cyc l e 10
. . .
i t e r 38 value 1391.747674
i t e r 38 value 1391.747674
f i n a l value 1391.747674
converged

Proces s ing time : 3 .394148 mins
LL per obs in e s t imat ion sample LL per obs in va l i d a t i on sample

[ 1 , ] =0.4443857 =0.4406022
[ 2 , ] =0.4478308 =0.4477109
[ 3 , ] =0.4449425 =0.4738243
[ 4 , ] =0.4515000 =0.4129839
[ 5 , ] =0.4479290 =0.4085494
[ 6 , ] =0.4452624 =0.4683615
[ 7 , ] =0.4450849 =0.4718987
[ 8 , ] =0.4437514 =0.4726223
[ 9 , ] =0.4401575 =0.5158918

[ 1 0 , ] =0.4430906 =0.4788588

Figure 51: Running apollo_outOfSample

model. All preference parameters β are allowed to vary across classes - this is a requirement when
using EM, although it is possible to �x some of the parameters to zero in some of the classes. The
class allocation probability for class s is determined by a single parameter πs, and is the same for
all individuals in the sample, i.e. there is no class allocation model using covariates. Estimation
is achieved through an iterative �ve step process detailed below (cf. Train, 2009, ch. 14).

1. De�nition of starting allocation probabilities π0s , and initial values for the preference
parameters β0s in each class. Preferences parameters should be di�erent across classes.

2. Calculate class allocation probabilities for each individual conditional on observed choices
for each class s ∈ {1, ..., S}, using the following expression.

h0n,s =
π0sLn,s(β

0
s )∑S

s=1 π
0
sLn,s(β

0
s )

(64)

Where Ln,s(β
0
s ) is the likelihood of the observed choice for individual n assuming class s.

3. Update the allocation probabilities as follows.

π1s =

∑
n h

0
n,s∑

n

∑
s′ h

0
n,s′

(65)

4. Update the preference parameters for each class by estimating separate weighted MNL
models. Estimation of each MNL model can be done using Maximum Likelihood, using h0n,s
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as weights.

β1s = argmaxβ0
s
(

N∑
n=1

h0n,slog(Ln,s)) ∀s (66)

5. Calculate the likelihood of the whole model and check for convergence. Convergence is
achieved when the change on this likelihood is smaller than an pre-de�ned value. If
convergence is not achieved, return to step 2.

We illustrate this example using the EM analogue of Apollo_example_18.r, i.e. the
simple two-class LC model on the Swiss route choice data. This example is available in
Apollo_example_27.r.

In terms of implementation, we have to write two di�erent likelihood (probability) functions:
(i) a class-speci�c conditional likelihood Ln,s, and (ii) the whole model likelihood

∑S
s=1 πsLn,s,

where n enumerates individuals. The latter is given as before in apollo_probabilities. The
conditional likelihoods are the only additional functions that must be written, compared to
Maximum Likelihood estimation.

Figure 52 to 54 present code implementing this algorithm. In Figure 52, we de�ne the name of
the attribute containing the weights in apollo_control, where this is then used later in the code.
In this implementation, we directly estimate the class allocation probabilities rather than using a
logistic transform as in Section 6.2, and we thus simply de�ne a parameter pi_a in apollo_beta,
which is then also used in setting the list entry lcpars[["pi_values"]] in apollo_lcPars.

### Set core c on t r o l s
apo l l o_cont ro l = l i s t (
modelName ="Apollo_example_27 " ,

. . .
weights = "weights " ,

. . .
)

. . .

### Vector o f parameters , i n c lud ing any that are kept f i x ed in e s t imat ion
apol lo_beta = c ( asc_1 = 0 ,
. . .

beta_ch_b ==2.1725 ,
pi_a = 0 . 5 )

. . .

# ################################################################# #
#### DEFINE LATENT CLASS COMPONENTS ####
# ################################################################# #

apol lo_lcPars=func t i on ( apollo_beta , apo l lo_inputs ) {
l c pa r s = l i s t ( )

. . .

l c p a r s [ [ " pi_values " ] ] = l i s t ( pi_a ,1=pi_a )

return ( l c pa r s )
}

Figure 52: EM algorithm for simple latent class: initial steps

Figure 53 shows the de�nition of an additional probabilities function,
apollo_probabilities_within_class, using a format consistent with the by now regular
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# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION FOR WITHIN CLASS ####
# ################################################################# #

apo l l o_probab i l i t i e s_wi th in_c la s s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Determine which c l a s s we ' re working in
s=apo l lo_inputs$s

### Li s t o f u t i l i t i e s : these must use the same names as in mnl_settings , order i s i r r e l e v a n t
V=l i s t ( )
V[ [ ' a l t1 ' ] ] = asc_1 + beta_tc [ [ s ] ] * tc1 + beta_tt [ [ s ] ] * t t1 + beta_hw [ [ s ] ] * hw1 + beta_ch [ [ s ] ] * ch1
V[ [ ' a l t2 ' ] ] = asc_2 + beta_tc [ [ s ] ] * tc2 + beta_tt [ [ s ] ] * t t2 + beta_hw [ [ s ] ] * hw2 + beta_ch [ [ s ] ] * ch2

### Def ine s e t t i n g s f o r MNL model component
mnl_sett ings = l i s t (

a l t e r n a t i v e s = c ( a l t 1 =1, a l t 2=2) ,
a v a i l = l i s t ( a l t 1 =1, a l t 2=1) ,
choiceVar = choice ,
V = V)

### Compute p r o b a b i l i t i e s us ing MNL model
P [ [ " model " ] ] = apollo_mnl ( mnl_settings , f u n c t i o n a l i t y )

### Take product ac ro s s obse rvat ion f o r same i nd i v i dua l
P = apollo_panelProd (P, apol lo_inputs , f u n c t i o n a l i t y )

### Apply weights
P = apol lo_weight ing (P, apol lo_inputs , f u n c t i o n a l i t y )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 53: EM algorithm for simple latent class: separate probabilities function for within class
model

apollo_probabilities, but looking at the within class models only. As can be seen, this uses
the scalar apollo_inputs$s, which is set inside the EM algorithm as we will see below, where
this is then used to determine which set of parameters to use, i.e. which class we are working
in. Additionally, as we are now using weighted estimation of the within class models, we make a
call to apollo_weighting after taking the product across choices for the same individual. The
remainder of this code is standard.

The key steps in the EM algorithm are implemented in Figure 54, following the �ve steps
outlined above. We �rst create a backup of apollo_fixed as the �xed parameters will change
throughout the algorithm. We then in step 1 initialise the class allocation probabilities and
set a stopping criterion before beginning the loop over iterations. Steps 2 and 3 are direct
implementations of the formulae shown above. Step 4 is split into two parts, one per class. We
�rst create the vector of weights to be used in estimation, where these are the conditional class
allocation probabilities for that class, where we replicate each of these once per observation per
individual to achieve the same length as the number of rows in the data. We then place this inside
apollo_inputs$database to be accessible inside apollo_probabilities_within_class. We
then include all parameters that do not relate to the within class model for class 1 in apollo_fixed
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and set apollo_inputs$s to 1 for use inside apollo_probabilities_within_class, before
estimating the within class parameters and updating apollo_beta. The process is repeated for
class 2. Finally, step 5 checks for convergence by calculating the overall likelihood and comparing
it to the previous iteration. Once convergence has been reached, we make a call to classical
estimation with 0 iterations, i.e. only estimating the covariance matrix.

10.6 LC model with covariates in the allocation function

We next turn to a latent class model with C di�erent classes where the class allocation is
determined by a MNL model using covariates Zn such as an individual's income, causing the
allocation probabilities πn,s to change from one individual to the next.

Estimation is achieved through an iterative process detailed below, where this incorporates
some departures from the approach in Section 10.5, drawing on Bhat (1997).

1. De�nition of starting values for γ and βs parameters, where βs should be di�erent across
classes.

2. Calculate class allocation probabilities conditional on observed choices for each class s ∈
{1, ..., S}, using the following expression.

h0n,s =
π0n,s(γ

0)Ln,s(β
0
s )∑S

s=1 π
0
n,s(γ

0)Ln,s(β0s )
(67)

where Ln,s(β
0
s ) is the likelihood of the observed choice for individual n assuming class s,

and where π0n,s(γ
0) is the class allocation probability for individual n for class s, using γ0

as parameters.
3. Update the parameters γ used in the class allocation model by maximising the allocation

probabilities weighted by h0n,s.

γ1 = argmaxγ0(

N∑
n=1

S∑
s=1

h0n,slog(πn,s)) (68)

4. Update the parameters βs for the within class model for each class by estimating separate
weighted MNL models, just as in the procedure in Section 10.5. Estimation of each MNL
model can be done using Maximum Likelihood, using h0n,s as weights.

β1s = argmaxβ0
s
(
N∑
n=1

h0n,slog(Ln,s)) ∀s (69)

5. Calculate the likelihood of the whole model and check for convergence. Convergence is
achieved when the change on this likelihood is smaller than an pre-de�ned value. If
convergence is not achieved, return to step 2.

We illustrate this example using the EM analogue of Apollo_example_20.r, i.e. the two-class
LC model on the Swiss route choice data, with covariates in the class allocation model. This
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### Keep backup o f vector o f f i x ed parameters as t h i s changes throughout
apol lo_f ixed_base = apo l l o_f ixed

### Step 1 ###

### I n i t i a l i s e c l a s s a l l o c a t i o n p r o b a b i l i t i e s
apol lo_beta [ " pi_a "]=0.5

### Loop over repeated EM i t e r a t i o n s un t i l convergence has been reached
s topp ing_cr i t e r i on=10^=5
i t e r a t i o n=1
stop=0
whi le ( stop==0){

cat (" S ta r t i ng i t e r a t i o n : " , i t e r a t i o n ,"\n" , sep="")

### Step 2 ###

### Calcu la te model l i k e l i h o o d and c l a s s s p e c i f i c l i k e l i h o o d s
L=apo l l o_p r obab i l i t i e s ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="output ")

### Calcu la te c l a s s s p e c i f i c c ond i t i ona l l i k e l i h o o d s
h1=as . vec tor ( apol lo_beta [ " pi_a " ]*L [ [ 1 ] ] / L [ [ 3 ] ] )
h2=as . vec tor ((1= apol lo_beta [ " pi_a " ] ) *L [ [ 2 ] ] / L [ [ 3 ] ] )

### Calcu la te cur rent log=l i k e l i h o o d f o r LC model
Lcurrent=sum( log (L [ [ 3 ] ] ) )
cat (" Current LL : " , Lcurrent ,"\n" , sep="")

### Step 3 ###

### Update share s in c l a s s e s
apol lo_beta [ " pi_a"]=sum(h1 ) /(sum(h1 )+sum(h2 ) )

### Step 4 ###

### Update c o e f f i c i e n t s in c l a s s s p e c i f i c models by es t imat ing c l a s s s p e c i f i c models
### using po s t e r i o r c l a s s a l l o c a t i o n p r o b a b i l i t i e s as weights

### Class 1

### Rep l i ca t e ind iv idua l=s p e c i f i c weights f o r each obse rvat ion
nObsPerIndiv <= as . vec tor ( t ab l e ( database [ , apo l l o_contro l$ ind iv ID ] ) )
apo l lo_inputs$database$weights=rep (h1 , t imes=nObsPerIndiv )

### Set f i x ed parameters ( only e s t imat ing parameters f o r c l a s s 1)
apo l l o_f ixed=c (" asc_2 " ," beta_tt_b " ," beta_tc_b" ,"beta_hw_b" ,"beta_ch_b" ," pi_a ")

### Set c l a s s index to use i n s i d e apo l l o_probab i l i t i e s_wi th in_c la s s
apo l lo_inputs$s=1

### Estimate c l a s s=s p e c i f i c weighted MNL model
model = apol lo_est imate ( apollo_beta , apo l lo_f ixed ,

apo l l o_probab i l i t i e s_wi th in_c la s s , apol lo_inputs ,
e s t imate_se t t ing s=l i s t ( w r i t e I t e r=FALSE, s i l e n t=TRUE, hess ianRout ine="none ") )

### Update o v e r a l l parameters
apol lo_beta=model$est imate

### Class 2

. . .

### Step 5 ###

### Calcu la te new log=l i k e l i h o o d and compute improvement
Lnew=sum( log ( apo l l o_p r obab i l i t i e s ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="output ") [ [ 3 ] ] ) )
change=Lnew=Lcurrent
cat ("New LL : " ,Lnew ,"\n" , sep="")
cat (" Improvement : " , change ,"\n\n" , sep="")

### Determine whether convergence has been reached
i f ( change<s topp ing_cr i t e r i on ) stop=1
i t e r a t i o n=i t e r a t i o n+1

}

#### CLASSICAL ESTIMATION FOR COVARIANCE MATRIX ####
### Reinstate o r i g i n a l vec tor o f f i x ed parameters
apo l l o_f ixed=apol lo_f ixed_base

model = apol lo_est imate ( apollo_beta , apo l lo_f ixed , apo l l o_probab i l i t i e s , apol lo_inputs ,
↪→ e s t imate_se t t ing s=l i s t ( maxIterat ions=0) )

Figure 54: EM algorithm for simple latent class: EM process
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example is available in Apollo_example_28.r. In our discussions here, we focus on those parts
that di�er from the example in the previous section. The model parameters are the same as
in Apollo_example_20.r, as shown in Section 6.2, as is the de�nition of apollo_lcPars and
apollo_probabilities. Furthermore, the de�nition of the within class probabilities function,
i.e. apollo_probabilities_within_class, is the same as in Apollo_example_27.r, cf. Figure
53.

The �rst di�erence arises in the need to create an additional probabilities function for the class
allocation model, de�ned as apollo_probabilities_class, and shown in Figure 55. This loads
the posterior class allocation probabilities from inside apollo_inputs where they are set inside
the main algorithm described later, and then manually implements the model from Equation 68.

We next turn to the actual EM algorithm, shown in Figure 56. The �rst di�erence arises
in step 2 in the code. In the example without covariates, the unconditional class allocation
probabilities were simply given by a parameter in apollo_beta. In this model, we create a
temporary model object which contains apollo_beta as estimates and then make a call to
apollo_lcUnconditionals to compute the class allocation probabilities. The remainder of this
step is the same as in Figure 54. Step 3 is entirely di�erent in that it estimates the parameters
for the class allocation model through maximisation of apollo_probabilities_class, where the
earlier conditional class allocation probabilities are placed into apollo_inputs to be accessible
inside the model. Steps 4 and 5 remain the same as before.

apo l l o_p robab i l i t i e s_c l a s s=func t i on ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="est imate ") {

### Attach inputs and detach a f t e r func t i on e x i t
apol lo_attach ( apollo_beta , apo l lo_inputs )
on . e x i t ( apol lo_detach ( apollo_beta , apo l lo_inputs ) )

### Create l i s t o f p r o b a b i l i t i e s P
P = l i s t ( )

### Load po s t e r i o r c l a s s a l l o c a t i o n p r o b a b i l i t i e s from inputs
h_1=apol lo_inputs$h1
h_2=apol lo_inputs$h2
h_grouped=l i s t (h_1 , h_2)

### Take l og s o f c l a s s a l l o c a t i o n p r o b a b i l i t i e s
log_pi_values=lapp ly ( pi_values , l og )

### Def ine model that aims to minimise d i f f e r e n c e between po s t e r i o r and uncond i t i ona l c l a s s a l l o c a t i o n
↪→ p r o b a b i l i t i e s

P [ [ " model " ] ]= exp (Reduce ( '+ ' , mapply ( ' * ' , h_grouped , log_pi_values , SIMPLIFY = FALSE) ) )

### Prepare and return outputs o f func t i on
P = apol lo_prepareProb (P, apol lo_inputs , f u n c t i o n a l i t y )
re turn (P)

}

Figure 55: EM algorithm for latent class with covariates: separate probabilities function for class
allocation model

10.7 MMNL model with full covariance matrix for random coe�cients

In this subsection, we describe the EM estimation of a MMNL model in which all parameters
are random and where we estimate a full covariance matrix between them. More formally, we
assume the preference parameters to follow a joint random normal distribution β ∼ N(µ,Σ),
where transformations to other distributions are straightforward, as explained in our example
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### Keep backup o f vector o f f i x ed parameters as t h i s changes throughout
apol lo_f ixed_base = apo l l o_f ixed

### Create temporary model ob j e c t
model=l i s t ( )

### Loop over repeated EM i t e r a t i o n s un t i l convergence has been reached
s topp ing_cr i t e r i on=10^=5
i t e r a t i o n=1
stop=0

whi le ( stop==0){
cat (" S ta r t i ng i t e r a t i o n : " , i t e r a t i o n ,"\n" , sep="")

### Step 2 ###

### ca l c u l a t e model l i k e l i h o o d and c l a s s s p e c i f i c l i k e l i h o o d s
L=apo l l o_p r obab i l i t i e s ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="output ")

### Calcu la te c l a s s s p e c i f i c c ond i t i ona l l i k e l i h o o d s
model$est imate=apol lo_beta
pi=apo l l o_lcUncond i t i ona l s (model , apo l lo_inputs ) [ [ " pi_values " ] ]
h1=as . vec tor ( p i [ [ 1 ] ] * L [ [ 1 ] ] / L [ [ 3 ] ] )
h2=as . vec tor ( p i [ [ 2 ] ] * L [ [ 2 ] ] / L [ [ 3 ] ] )

### Calcu la te cur rent log=l i k e l i h o o d f o r LC model
Lcurrent=sum( log (L [ [ 3 ] ] ) )
cat (" Current LL : " , Lcurrent ,"\n" , sep="")

### Step 3 ###

### Update share s in c l a s s e s by opt imi s ing c l a s s a l l o c a t i o n model only

### Fix a l l parameters f o r with in c l a s s models
apo l l o_f ixed=c (" asc_1 " ,

"asc_2 " ,
"beta_tt_a " ,
"beta_tt_b " ,
"beta_tc_a " ,
"beta_tc_b" ,
"beta_hw_a" ,
"beta_hw_b" ,
"beta_ch_a" ,
"beta_ch_b" ,
"delta_b " ,
"gamma_commute_b" ,
"gamma_car_av_b" )

### Put po s t e r i o r c l a s s a l l o c a t i o n p r o b a b i l i t i e s in to input ob j e c t f o r use i n s i d e
↪→ apo l l o_p robab i l i t i e s_c l a s s

apol lo_inputs$h1=h1
apol lo_inputs$h2=h2

### Estimate c l a s s a l l o c a t i o n model
model = apol lo_est imate ( apollo_beta , apo l lo_f ixed ,

apo l l o_probab i l i t i e s_c l a s s , apol lo_inputs ,
e s t imate_se t t ing s=l i s t ( w r i t e I t e r=FALSE, s i l e n t=TRUE, hess ianRout ine="none ") )

### Update o v e r a l l parameters
apol lo_beta=model$est imate

### Step 4 ###
. . .

i t e r a t i o n=i t e r a t i o n+1
}

Figure 56: EM algorithm for latent class with covariates: EM process

below.
The iterative process is described below (cf. Train, 2009, chapter 11).

1. De�ne starting values for µ0 and Σ0.
2. Generate R multivariate draws for each individual n, say β0n,r for draw r, where β0n,r contains



Apollo: user manual for version 0.0.7 112

one value for each random parameter.
3. Calculate the model likelihood at the individual level for each draw, i.e. Ln,r(β

0
n,r).

4. Calculate weights for each draw and for each individual using the following expression.

w0
n,r =

Ln,r∑
r Ln,r
R

∀r, n (70)

5. Update the means of the random parameters.

µ1 =
w0
n,rβ

0
n,r

RN
(71)

Where N is the number of individuals in the sample.
6. Update the covariance matrix of the random parameters, given by

Σ0 =
w0
n,rΣ

0
n,r

RN
, (72)

where this requires calculating the covariance matrix Σ0
n,r at the individual draw level, given

by:

Σ0
n,r =

(
β0n,r − µ1

)
·
(
β0n,r − µ1

)′
. (73)

7. Calculate the likelihood of the whole model and check for convergence. Convergence is
achieved when the change on this likelihood is smaller than an pre-de�ned value. If
convergence is not achieved, return to step 2.

Unlike previous examples in this section, the EM estimation of MMNL models does not require
writing additional likelihood functions, as compared to the Maximum Likelihood implementation.
Functions apollo_randCoeff and apollo_probabilities are su�cient to do EM estimation.
Furthermore, this algorithm has the bene�t of not needing any maximisation at all. Figure
57 presents code implementing this algorithm for the EM analogue of Apollo_example_15.r,
i.e. using a MMNL model with correlated negative Lognormals on the Swiss route choice data.
This example is implemented in Apollo_example_29.r. We focus solely on the EM algorithm
steps as the de�nition of apollo_randCoeff and apollo_probabilities remains the same as in
Apollo_example_15.r.

The actual implementation is straightforward and only a few points need discussing. Firstly,
we again make use of a temporary model object in which we place the current estimates, allowing
us to then make the call to apollo_unconditionals to obtain the actual coe�cient values. These
are then negative lognormals, and we �rst translate them back to Normals, using the logarithm
of the negative draws. The implementation of Equation 72 is followed by the calculation of the
Cholesky matrix for that covariance of the draws, as this corresponds to the parameters used in
apollo_beta and then apollo_randCoeff.
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### Create temporary model ob j e c t
model=l i s t ( )

### Calcu la te i n i t i a l l i k e l i h o o d at the l e v e l o f each draw
Ln=apo l l o_p r obab i l i t i e s ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="cond i t i o n a l s ")
cat (" I n i t i a l LL : " , sum( log ( rowMeans (Ln) ) ) ,"\n")

### Loop over repeated EM i t e r a t i o n s un t i l convergence has been reached
s topp ing_cr i t e r i on=10^=5
i t e r a t i o n=1
stop=0

whi le ( stop==0){
cat (" S ta r t i ng i t e r a t i o n : " , i t e r a t i o n ,"\n" , sep="")
cat (" Current LL : " ,sum( log ( rowMeans (Ln) ) ) ,"\n" , sep="")

### Calcu la te weight f o r each i nd i v i dua l and f o r each draw
wn=Ln/( rowMeans (Ln) )

### Copy current parameter va lues in to temporary model ob j e c t
model$est imate=apol lo_beta

### Produce draws f o r random c o e f f i c i e n t s with cur rent vector o f parameters
d=apo l l o_uncond i t i ona l s (model , apo l l o_probab i l i t i e s , apo l lo_inputs )

### Trans late draws back to Normal from negat ive Lognormal
d=lapp ly (d , func t i on (x ) log (=x ) )

### Apply weights to i nd i v i dua l draws and turn in to a matrix
dwn=lapp ly (d ,"*" ,wn)
dwn=lapp ly (dwn , as . vec tor )
dwn=do . c a l l ( cbind , dwn)

### Calcu la te means f o r weighted draws
mu=colMeans (dwn)

### Calcu la te weighted covar iance matrix
K = length (mu) # n of c o e f f i c i e n t s
R = nco l (d [ [ 1 ] ] ) # n o f draws
N = nrow (d [ [ 1 ] ] ) # n o f i nd i v i dua l s
tmp=matrix (0 , nrow=N, nco l=K)
Omega=matrix (0 , nrow=K, nco l=K)
f o r ( r in 1 :R) {

f o r (k in 1 :K) tmp [ , k ] = d [ [ k ] ] [ , r ] = mu[ k ]
f o r (n in 1 :N) Omega = Omega + wn[ n , r ] * ( tmp [ n , ] %*% t (tmp [ n , ] ) )

}

### Compute Cholesky o f average weighted covar iance matrix
cho le sky = cho l (Omega/(N*R) )
cho le sky = cho lesky [ upper . t r i ( ( cho le sky ) , diag=TRUE) ]

### Update vector o f model parameters on the ba s i s o f c a l cu l a t ed mu and Omega
apol lo_beta [ 1 : 4 ]=mu
apol lo_beta [ 5 : 14 ]= cho le sky

### Calcu la te l i k e l i h o o d with new parameters
Lnew=(( apo l l o_p r obab i l i t i e s ( apollo_beta , apol lo_inputs , f u n c t i o n a l i t y="cond i t i o n a l s ") ) )

### Compute improvement
change=sum( log ( rowMeans (Lnew) ) )=sum( log ( rowMeans (Ln) ) )
cat ("New LL : " ,sum( log ( rowMeans (Lnew) ) ) ,"\n" , sep="")
cat (" Improvement : " , change ,"\n\n" , sep="")
Ln=Lnew

### Determine whether convergence has been reached
i f ( change<s topp ing_cr i t e r i on ) stop=1
i t e r a t i o n=i t e r a t i o n+1

}

#### CLASSICAL ESTIMATION FOR COVARIANCE MATRIX ####

### Reinstate o r i g i n a l vec tor o f f i x ed parameters
apo l l o_f ixed=apol lo_f ixed_base

model = apol lo_est imate ( apollo_beta , apo l lo_f ixed , apo l l o_probab i l i t i e s , apol lo_inputs ,
e s t imate_se t t ing s=l i s t ( hess ianRout ine="maxLik " , maxIterat ions=0) )

Figure 57: EM estimation of Mixed Logit with correlated negative Lognormals



A Apollo versions: timeline, changes and backwards compatibility

Version 0.0.6 (13 March 2019)

This is the �rst fully functioning release of Apollo.

Version 0.0.7 (8 May 2019)

Changes to Apollo code:

General
Minor improvements to e�ciency, stability and reporting of user errors.

Inputs changed for apollo_choiceAnalysis

Functions a�ected: apollo_choiceAnalysis
Detailed description: inputs changed so function can be called prior to
apollo_validateInputs

Backwards compatibility of code: function call changed from version 0.0.7 onwards

Constraints for classical estimation
Functions a�ected: apollo_estimate
Detailed description: Apollo now allows the user to include a list called constraints in
estimate_settings for use with BFGS for classical model estimation.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Scaling of parameters during model estimation
Functions a�ected: apollo_estimate
Detailed description: scaling of model parameters can be used during estimation
Backwards compatibility of code: no backwards compatibility issues for existing functions

Validation output
Functions a�ected: apollo_estimate
Detailed description: Apollo no longer reports that all pre-estimation checks were passed for
a model component and instead only reports if there are an issues.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Bayesian estimation produces model$estimate

Functions a�ected: apollo_estimate, apollo_prediction, apollo_llCalc
Detailed description: until version 0.0.6, Bayesian estimation in Apollo did not produce a
model$estimate output. We have retained the various existing outputs, but in addition,
model$estimate is now produced, combining non-random parameters with individual speci�c
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posteriors for random parameters. This now allows the user to use apollo_prediction

and apollo_llCalc on such outputs, where care is of course required in interpretation of
outputs based on posterior means.
Backwards compatibility of code: no backwards compatibility issues for existing functions

Changes to Apollo examples:

Examples a�ected: apollo_example_1.r and apollo_example_2.r

Detailed description: Use of apollo_choiceAnalysis added
Backwards compatibility of examples: a�ected part only works from version 0.0.7 onwards

Examples a�ected: apollo_example_12.r
Detailed description: Scaling in estimation implemented
Backwards compatibility of examples: only works from version 0.0.7 onwards

Examples a�ected: apollo_example_26.r
Detailed description: HB prediction component added
Backwards compatibility of examples: a�ected part only works from version 0.0.7 onwards

Bug �xes:

apollo_speedTest
This function was unintentionally hidden from users in previous versions

B Data dictionaries

Tables A1 to A4 present data dictionaries for the four datasets made available with Apollo.

C Index of example �les

Table A5 presents an overview of the example �les made available with Apollo, while Table A6
shows which function is used with what example.

D Overview of functions and elements

Table A7 presents an overview of all Apollo functions, together with their inputs and outputs.
Table A8 and Table A9 give an overview of all the lists and elements used by Apollo.
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Table A1: Data dictionary for apollo_modeChoiceData.csv

Individuals 500
Observations 8,000

Variable Description Values

ID Unique individual ID 1 to 500
RP RP data identi�er 1 for RP, 0 for SP
SP SP data identi�er 1 for SP, 0 for RP

RP_journey Index for RP observations 1 to 2, NA for SP
SP_task Index for SP observations 1 to 14, NA for RP

av_car availability for alternative 1 (car) 1 for available, 0 for unavailable
av_bus availability for alternative 2 (bus) 1 for available, 0 for unavailable
av_air availability for alternative 3 (air) 1 for available, 0 for unavailable
av_rail availability for alternative 4 (rail) 1 for available, 0 for unavailable

time_car travel time (mins) for alternative 1 (car) Min: 250, mean: 311.79, max: 390 (0 if not available)
cost_car travel cost (£) for alternative 1 (car) Min: 30, mean: 39.99, max: 50 (0 if not available)

time_bus travel time (mins) for alternative 2 (bus) Min: 300, mean: 370.29, max: 420 (0 if not available)
cost_bus travel cost (£) for alternative 2 (bus) Min: 15, mean: 25.02, max: 35 (0 if not available)

access_bus access time (mins) for alternative 2 (bus) Min: 5, mean: 15.02, max: 25 (0 if not available)

time_air travel time (mins) for alternative 3 (air) Min: 50, mean: 70.07, max: 90 (0 if not available)
cost_air travel cost (£) for alternative 3 (air) Min: 50, mean: 79.94, max: 110 (0 if not available)

access_air access time (mins) for alternative 3 (air) Min: 35, mean: 45.02, max: 55 (0 if not available)
service_air service quality for alternative 3 (air) 1 to 3 (0 if not available)

time_rail travel time (mins) for alternative 4 (rail) Min: 120, mean: 142.93, max: 170 (0 if not available)
cost_rail travel cost (£) for alternative 4 (rail) Min: 35, mean: 55.03, max: 75 (0 if not available)

access_rail access time (mins) for alternative 4 (rail) Min: 5, mean: 14.96, max: 25 (0 if not available)
service_rail service quality for alternative 4 (rail) 1 to 3 (0 if not available)

female dummy variable for female individuals 1 for female, 0 otherwise
business dummy variable for business trips 1 for business trips, 0 otherwise
income income variable (£ per annum) Min: 15,490, mean: 44,748.27, max: 74,891
choice choice variable 1 for car, 2 for bus, 3 for air, 4 for rail
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Table A2: Data dictionary for apollo_swissRouteChoiceData.csv

Individuals 388
Observations 3,492

Variable Description Values

ID Unique individual ID 2,439 to 84,525
choice choice variable 1 for alternative 1, 2 for alternative 2

tt1 travel time (mins) for alternative 1 Min: 2, mean: 52.59, max: 389
tc1 travel cost (CHF) for alternative 1 Min: 1, mean: 19.67, max: 206
hw1 headway (mins) for alternative 1 Min: 15, mean: 32.48, max: 60
ch1 interchanges for alternative 1 Min: 0, mean: 0.94, max: 2

tt2 travel time (mins) for alternative 2 Min: 2, mean: 52.47, max: 385
tc2 travel cost (CHF) for alternative 2 Min: 1, mean: 19.69, max: 268
hw2 headway (mins) for alternative 2 Min: 15, mean: 32.38, max: 60
ch2 interchanges for alternative 2 Min: 0, mean: 0.95, max: 2

hh_inc_abs household income (CHF per annum) Min: 10,000, mean: 76,507.73, max: 167,500
car_availability car availability 1 for yes, 0 otherwise

commute dummy variable for commute trips 1 for commute trips, 0 otherwise
shopping dummy variable for shopping trips 1 for shopping trips, 0 otherwise
business dummy variable for business trips 1 for business trips, 0 otherwise
leisure dummy variable for leisure trips 1 for leisure trips, 0 otherwise
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Table A3: Data dictionary for apollo_drugChoiceData.csv

Individuals 1,000
Observations 10,000

Variable Description Values

ID Unique respondent ID 1 to 1,000
task Index for SP choice tasks 1 to 10
best �rst ranked alternative 1 to 4

second_pref second ranked alternative 1 to 4
third_pref third ranked alternative 1 to 4

worst worst ranked alternative 1 to 4

brand_1 brand for �rst alternative Artemis; Novum
country_1 country for �rst alternative Switzerland; Denmark; USA

char_1 characteristics for �rst alternative standard; fast acting; double strength
side_e�ects_1 rate of side e�ects for �rst alternative

(out of 100,000)
Min: 1, mean: 37, max: 100

price_1 price (£) for �rst alternative Min: 2.25, mean: 3.15, max: 4.5

brand_2 brand for second alternative Artemis; Novum
country_2 country for second alternative Switzerland; Denmark; USA

char_2 characteristics for second alternative standard; fast acting; double strength
side_e�ects_2 rate of side e�ects for second

alternative (out of 100,000)
Min: 1, mean: 37, max: 100

price_2 price (£) for second alternative Min: 2.25, mean: 3.15, max: 4.5

brand_3 brand for third alternative BestValue; Supermarket; PainAway
country_3 country for third alternative USA; India; Russia; Brazil

char_3 characteristics for third alternative standard; fast acting
side_e�ects_3 rate of side e�ects for third alternative

(out of 100,000)
Min: 10, mean: 370, max: 1,000

price_3 price (£) for third alternative Min: 0.75, mean: 1.75, max: 2.5

brand_4 brand for fourth alternative BestValue; Supermarket; PainAway
country_4 country for fourth alternative USA; India; Russia; Brazil

char_4 characteristics for fourth alternative standard; fast acting
side_e�ects_4 rate of side e�ects for fourth alternative

(out of 100,000)
Min: 10, mean: 370, max: 1,000

price_4 price (£) for fourth alternative Min: 0.75, mean: 1.75, max: 2.5

regular_user dummy variable for regular users 1 for regular users, 0 otherwise
university_educated dummy variable for university

educated
1 for university educated, 0 otherwise

over_50 dummy variable for age over 50 years 1 for age over 50 years, 0 otherwise

attitude_quality Answer to �I am concerned about the

quality of drugs developed by unknown

companies"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_ingredients Answer to �I believe that ingredients are

the same no matter what the brand"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_patent Answer to �The original patent holders

have valuable experience with their

medecines"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)

attitude_dominance Answer to �I believe the dominance

of big pharmaceutical companies is

unhelpful"

Likert scale from 1 (strongly disagree)
to 5 (strongly agree)
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Table A4: Data dictionary for apollo_timeUseData.csv

Individuals 447
Observations 2,826

Variable Description Values

indivID Unique respondent ID 19209 to 9959342
day Index of the day for the individual (day

1 excluded from data)
2 to 14

date Date in format yyyymmdd 20161014 to 20170308

budget Total amount of time registered during
the day (in minutes)

1440 to 1440

t_a01 time spent dropping-o� or picking up
other people (in minutes)

0 to 1153

t_a02 time spent working (in minutes) 0 to 1425
t_a03 time spent on educational activities (in

minutes)
0 to 1050

t_a04 time spent shopping (in minutes) 0 to 1434
t_a05 time spent on private business (in

minutes)
0 to 1077

t_a06 time spent getting petrol (in minutes) 0 to 896
t_a07 time spent on social or leasure activities

(in minutes)
0 to 1425

t_a08 time spent on vacation or on long
(intercity) travel (in minutes)

0 to 828

t_a09 time spent doing exercise (in minutes) 0 to 1416
t_a10 time spent at home (in minutes) 0 to 1440
t_a11 time spent travelling (everyday

travelling) (in minutes)
0 to 1182

t_a12 Non-allocated time (in minutes) 0 to 1160

female dummy variable for female individuals 1 for female, 0 otherwise
age age of the respondent (in years,

approximate)
21 to 80

occ_full_time dummy for respondents working full
time

1 for respondents working full time, 0
otherwise

weekend dummy for weekend days 1 for weekend, 0 otherwise
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Table A7: Functions used by Apollo, with inputs and outputs

Function Arguments Description Output

apollo_attach apollo_beta,
apollo_inputs

Attaches parameters and data to allow users to
refer to individual variables by name without
reference to the object they are contained in.

None

apollo_avgInterDraws P, apollo_inputs,
functionality

Averages individual-speci�c likelihood across
inter-individual draws.

Likelihood values (vector, one
element per individual)

apollo_avgIntraDraws P, apollo_inputs,
functionality

Averages observation-speci�c likelihood across
intra-individual draws.

Likelihood values (vector or
matrix, one row per
observation)

apollo_choiceAnalysis choiceAnalysis_settings,
apollo_control, database

Compares market shares across subsamples in
dataset, and writes results to a �le.

None (only written to �le)

apollo_cnl cnl_settings,
functionality

Calculates probabilities of a cross nested logit
model.

Likelihood values (vector,
matrix or 3-dim array)

apollo_combineModels P, apollo_inputs,
functionality

Calculates the combined likelihood from several
model components.

Likelihood values (vector,
matrix or 3-dim array)

apollo_combineResults combineResults_settings Writes results from a series of models into a single
CSV �le.

None (only written to �le)

apollo_conditionals model,
apollo_probabilities,
apollo_inputs

Computes posterior distributions from continuous
mixture models, and reports conditional means and
standard deviations at the person level for each
random coe�cient.

A list of matrices, one per
random coe�cient.

apollo_deltaMethod model,
deltaMethod_settings

Calculates the standard errors of transformations of
parameters.

None (only printed to screen)

apollo_detach apollo_beta,
apollo_inputs

Detaches variables attached by apollo_attach None

apollo_dft dft_settings,
functionality

Calculate probabilities of a Decision Field Theory
(DFT) with external thresholds.

Likelihood values (vector,
matrix or 3-dim array)

apollo_el el_settings, functionality Calculate probabilities of an exploded logit model. Likelihood values (vector,
matrix or 3-dim array)

apollo_estimate apollo_beta,
apollo_�xed,
apollo_probabilities,
apollo_inputs,
estimate_settings

Estimates parameters for a model by maximising
the log-likelihood.

Model object
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apollo_�rstRow P, apollo_inputs Extracts the values from the input object (typically
probabilities) for the �rst observation for each
individual.

Same format as input, but with
reduced rows.

apollo_�tsTest model,
apollo_probabilities,
apollo_inputs,
�tsTest_settings

Compares the �t across subsamples in the data for
a given model.

None (only printed to screen)

apollo_initialise none Prepares global (i.e. user's) environment for a new
model estimation.

None

apollo_lc lc_settings,
apollo_inputs,
functionality

Calculates likelihood of latent class model as the
sum across class of within clas probabilities and
class allocation probabilities.

Likelihood values (vector,
matrix or 3-dim array)

apollo_lcConditionals model,
apollo_probabilities,
apollo_inputs

Calculates the posterior expected values
(conditionals) of the class allocation probability for
each individual.

A matrix with the posterior
class allocation probabilites for
each individual.

apollo_lcPars apollo_beta,
apollo_inputs

User-de�ned function used for latent class models,
which receives two arguments: apollo_beta and
apollo_inputs.

List of: allocation probabilities
(named "pi_values"), and one
list per parameter (each with as
many elements as classes).

apollo_lcUnconditionals model,
apollo_probabilities,
apollo_inputs

Returns unconditionals for latent class parameters
in model, including interactions with deterministic
covariates

List of vectors, with the values
of random coe�cients for each
draw.

apollo_llCalc apollo_beta,
apollo_probabilities,
apollo_inputs

Calculates the likelihood of each model component
as well as for the whole model.

A list of likelihood values
(vector)

apollo_loadModel modelName Loads to memory an estimated model object from a
�le in the current working directory.

Model object

apollo_lrTest baseModel, generalModel Calculates the likelihood ratio test and prints result. None (only printed to screen)
apollo_mdcev mdcev_settings,

functionality
Calculates the likelihood of a Multiple Discrete
Continuous Extreme Value (MDCEV)

Likelihood values (vector,
matrix or 3-dim array)

apollo_mdcnev mdcnev_settings,
functionality

Calculates the likelihood of a Multiple Discrete
Continuous Nested Extreme Value (MDCEV)
model with an outside good.

Likelihood values (vector,
matrix or 3-dim array)

apollo_mnl mnl_settings,
functionality

Calculates probabilities of a multinomial logit
model.

Likelihood values (vector,
matrix or 3-dim array)

apollo_modelOutput model,
modelOutput_settings

Prints estimation results to console. Amount of
information presented can be adjusted through
arguments.

None (only printed to screen)
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apollo_nl nl_settings, functionality Calculates probabilities of a nested logit model. Likelihood values (vector,
matrix or 3-dim array)

apollo_normalDensity normalDensity_settings,
functionality

Calculates the density from a Normal distribution
at a speci�c value with a speci�ed mean and
standard deviation.

Likelihood values (vector,
matrix or 3-dim array)

apollo_ol ol_settings, functionality Calculates probabilities of an ordered logit model. Likelihood values (vector,
matrix or 3-dim array)

apollo_outOfSample apollo_beta,
apollo_�xed,
apollo_probabilities,
apollo_inputs,
estimate_settings,
outOfSample_settings

Generates estimation and validation samples,
estimates the model on the �rst and calculates the
likelihood for the second, then repeats.

Files with parameters and �ts
and samples matrix

apollo_panelProd P, apollo_inputs,
functionality

Calculates liklelihood of sequence of observations
for each individual.

Likelihood values (vector or
matrix)

apollo_prediction model,
apollo_probabilities,
apollo_inputs,
modelComponent

Makes model predictions using the model speci�ed
by the user.

List of forecasted values, one
element per alternative.

apollo_prepareProb P, apollo_inputs,
functionality

Prepares the output from the user speci�ed
probabilities function

Likelihood values (vector)

apollo_probabilities apollo_beta,
apollo_inputs,
functionality

User de�ned function determining the model
likelihood. It must receive three arguments:
apollo_beta, apollo_inputs, and functionality.

Likelihood of the model (or log
of it if workInLogs is TRUE)
(vector)

apollo_randCoe� apollo_beta,
apollo_inputs

User de�ned function used for mixture models,
which receives two arguments: apollo_beta and
apollo_inputs.

List of random parameters.

apollo_readBeta apollo_beta,
apollo_�xed,
inputModelName,
overwriteFixed

Retrieves values of parameters with matching
names from a previously estimated model.

Named numeric vector of
parameters.

apollo_saveOutput model,
saveOutput_settings

Writes estimation results into various output �les. None (only written to �le)

apollo_searchStart apollo_beta,
apollo_�xed,
apollo_probabilities,
apollo_inputs,
searchStart_settings

Given a set of starting values and a range for them,
searches for points with a better starting likelihood.

Named numeric vector of
parameters.
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apollo_sharesTest model,
apollo_probabilities,
apollo_inputs,
sharesTest_settings

Prints tables comparing the shares predicted by the
model with the shares observed in the data, across
subsamples.

None (only printed to screen)

apollo_speedTest apollo_beta,
apollo_�xed,
apollo_probabilities,
apollo_inputs,
speedTest_settings

Gives an estimate of the computation time as a
function of the number of cores and number of
draws.

None (only printed to screen)

apollo_unconditionals model,
apollo_probabilities,
apollo_inputs

Returns draws (unconditionals) for random
parameters in model, including interactions with
deterministic covariates

List of vectors, with the values
of random coe�cients for each
draw.

apollo_validateInputs none Searches the user work space for all necessary input
to run \codeapollo_estimate, and packs it in a
single list.

List grouping several required
input for model estimation.

apollo_weighting P, apollo_inputs,
functionality

Applies weights to probabilities Likelihood values (vector, one
element per individual)
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Table A8: Lists used by Apollo

Name of list Contents Description

apollo_control modelName, modelDescr, indivId, mixing, nCores, workInLogs, seed, HB,
noValidation, noDiagnostics, weights

Settings for apollo_control

apollo_draws inter_drawsType, inter_nDraws, inter_unifDraws, inter_normDraws,
intra_drawsType, intra_nDraws, intra_unifDraws, intra_normDraws

Settings for apollo_draws

apollo_HB hb_dist, other parameters described in the RSGHB package Settings for apollo_HB
apollo_inputs List List grouping most common

inputs. Created by function
apollo_validateInput.

choiceAnalysis_settings alternatives, avail, choiceVar, explanators Settings for
apollo_choiceAnalysis

cnl_settings alternatives, avail, choiceVar, V, cnlNests, cnlStructure, rows Settings for apollo_cnl
combineResults_settings printClassical, printPVal, printT1, estimateDigits, tDigits, pDigits Settings for

apollo_combineResults
deltaMethod_settings operation, par_1, par_2, mult_1, mult_2 Settings for

apollo_deltaMethod
dft_settings alternatives, avail, choiceVar, attrValues, altStart, attrWeights, attrScalings,

procPars, rows
Settings for apollo_dft

el_settings alternatives, avail, choiceVars, V, scales, rows Settings for apollo_el
estimate_settings estimationRoutine, maxIterations, writeIter, hessianProc, printLevel,

numDeriv_settings, silent, constraints, scaling
Settings for apollo_estimate

�tsTest_settings �ts, categories Settings for apollo_�tsTest
lc_settings inClassProb, classProb Settings for apollo_lc

mdcev_settings V, alternatives, alpha, gamma, sigma, cost, avail, continuous_choice, budget,
min_consumption, rows

Settings for apollo_mdcev

mdcnev_settings V, alternatives, alpha, gamma, sigma, mdcnevNests, mdcnevStructure, cost,
avail, continuous_choice, budget, min_consumption, rows

Settings for apollo_mdcnev

mnl_settings alternatives, avail, choiceVar, V, rows Settings for apollo_mnl
modelOutput_settings printClassical, printPVal, printT1, printDiagnostics, printCovar, printCorr,

printOutliers, printChange
Settings for
apollo_modelOutput

nl_settings alternatives, avail, choiceVar, V, nlNests, nlSTructure, rows Settings for apollo_nl
normalDensity_settings Y, X, mu, sigma Settings for

apollo_normalDensity
ol_settings Y, V, tau, coding, rows Settings for apollo_ol

outOfSample_settings nRep, validationSize, samples Settings for
apollo_outOfSample
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procPars error_sd, timesteps, phi1, phi2 List containing the four DFT
'process parameters'

saveOutput_settings printClassical, printPVal, printT1, printDiagnostics, printCovar, printCorr,
printOutliers, printChange, saveEst, saveCorr, saveModelObject, writeF12

Settings for apollo_saveOutput

searchStart_settings nCandidates, smartStart, apollo_beta_min, apollo_beta_max, maxStages,
dtest, gtest, Ltest, bfgsIter

Settings for apollo_searchStart

sharesTest_settings true_shares, predicted_shares, subsamples Settings for apollo_sharesTest
speedTest_settings nDrawsTry, nCoresTry, nRep Settings for apollo_speedTest
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Table A9: Elements in lists and functions used by Apollo

Element Type Description

alpha Named list of numeric vectors Alpha parameters of MDC(N)EV associated to each alternative, including for
the outside good. As many elements as alternatives.

alternatives [MNL, NL, CNL] Named numeric
vector

Names of alternatives and their corresponding value in choiceVar. Should
have as many elements as V.

alternatives [MDCEV, MDCNEV] Character
vector

Names of alternatives, elements must match the names in list 'V'. If using an
outside good, it must include "outside".

altStart Named list of numeric vectors As many elements as alternatives. Each elment can be a scalar or vector
containing the starting preference value for the alternative.

apollo_beta Named numeric vector Names and starting values for parameters.
apollo_�xed Character vector Names of parameters whose values are to remain �xed throughout estimation.

apolloBetaMax Numeric vector Minimum possible value of parameters when generating candidates. Ignored if
smartStart is TRUE. Default is apollo_beta - 0.1.

apolloBetaMin Numeric vector Maximum possible value of parameters when generating candidates. Ignored
if smartStart is TRUE. Default is apollo_beta + 0.1.

attrScalings Named list of vectors, matrices or
3-dim arrays

A named list with as many elements as attributes, or fewer. Each element is a
factor scaling the attribute value. attrWeights and attrScalings should not be
both de�ned for an attribute. Default is 1 for all attributes.

attrValues Named list of lists As many elements as alternatives. Each sub-list contains the alternative
attributes for each observation (usually a column from the database). All
alternatives must have the same attributes (can be set to zero if not relevant).

attrWeights Named list of vectors, matrices or
3-dim arrays

As many elements as attributes, or fewer. Each element is the weight of the
attribute. They should add up to one for each observation and draw (if
present), and will be re-scaled if they do not. attrWeights and attrScalings
should not be both de�ned for an attribute. Default is 1 for all attributes.

avail Named list of numeric vectors or
scalars

Availabilities of alternatives, one element per alternative. Names of elements
must match those in alternatives. Values can be a vector of 0 or 1.

base_model Character Name of a previously estimated model. This is the restricted model, i.e. the
one with fewer parameters.

bfgsIter Numeric scalar Number od BFGS iterations to perform at each stage to each remaining
candidate. Default is 1.

budget Numeric vector Budget for each observation.
choiceVar Numeric vector Contains choices for all observations. It will usually be a column from the

database. Values are de�ned in alternatives.
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choiceVars List of numeric vectors Contain choices for each position of the ranking. The list must be ordered
with the best choice �rst, second best second, etc. It will usually be a list of
columns from the database.

classProb List of probabilities Allocation probability of each class. One element per class, in the same order
than inClassProb.

cnlNests List of numeric scalars or vectors Lambda parameters for each nest. Elements must be named with the nest
name. The lambda at the root is �xed to 1, and therefore must be no be
de�ned.

cnlStructure Numeric matrix One row per nest and one column per alternative. Each element of the matrix
is the alpha parameter of each (nest, alternative) pair.

coding Numeric or character vector Optional argument. De�nes the order of the levels in outcomeOrdered. The
�rst value is associated with the lowest level of V, and the last one with the
highest value. If not provided, is assumed to be 1, 2, ... (length(tau) + 1).

constraints List Optional argument. List of constraints for maxLik.
continuous_choice Named list of numeric vectors Amount of consumption of each alternative. One element per alternative, as

long as the number of observations (or a scalar). Names must match those in
alternatives.

cost Named list of numeric vectors Price of each alternative. One element per alternative, each one as long as the
number of observations (or a scalar). Names must match those in alternatives.

database data.frame Data used by model.
dTest Numeric scalar Tolerance for test 1. A candidate is discarded if its distance in parameter

space to a better one is smaller than \codedTest. Default is 1.
error_sd Numeric scalar or vector The standard deviation of the the error term in each timestep.

estimateDigits Numeric scalar Number of decimal places to print on estimate values. Default is four.
estimationRoutine Character Estimation algorithm. Can take values "bfgs" (recommended), "bhhh", or

"nr". Used only if apollo_control$HB is FALSE. Default is "bfgs".
explanators data.frame Variables determining subsamples of the database. Values in each column

must describe a group or groups of individuals (e.g. socio-demographics).
Most usually a subset of columns from database.

�ts Numeric vector Predicted probability for chosen alternative for each observation.
functionality Character Description of the desired output from apollo_probabilities. Can take the

values: "estimate", "prediction", "validate", "zero_LL", "conditionals",
"output", "raw".

gamma Named list of numeric vectors Gamma parameters associated to each alternative. As many elements as
alternatives.

general_model Character or model object Name or model object of a previously estimated model. This model should
nests base_model, meaning it should more parameters than it.
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gTest Numeric scalar Tolerance for test 2. A candidate is discarded if the norm of its gradient is
smaller than gTest AND its LL is further than llTest from a better candidate.
Default is 10�(-3).

HB Boolean TRUE to estimate model using Hierarchical Bayes techniques (using the
RSGHB package).

hbDist Vector Contains numbers indicating the distributional assumptions of each
parameter (in the same order as apollo_beta).

hessianRoutine Character Name of routine used to calculate the Hessian of the loglikelihood function.
Valid values are "numDeriv" (default) and "maxLik" to use the routines in
those packages. Only used if apollo_control$HB=FALSE.

inClassProb List of probabilities Conditional likelihood of each class. One element per class, in the same order
than classProb.

indivId Character Name of the variable in database containing the identi�cation of individuals.
input_modelName Character Name of model whose estimated parameters are to be loaded.

interDrawsType Character Type of inter-individual draws
('halton','mlhs','pmc','sobol','sobolOwen','sobolFaureTezuka',
'sobolOwenFaureTezuka' or the name of an object loaded in memory).

interNDraws Numeric Number of inter-individual draws per individual. Should be set to 0 if not
using them.

interNormDraws Character vector Names of normalyl distributed inter-individual draws.
interUnifDraws Character vector Names of uniformly distributed inter-individual draws.
intraDrawsType Character Type of intra-individual draws

('halton','mlhs','pmc','sobol','sobolOwen','sobolFaureTezuka',
'sobolOwenFaureTezuka' or the name of an object loaded in memory).

intraNDraws Numeric Number of intra-individual draws per individual. Should be set to 0 if not
using them.

intraNormDraws Character vector Names of normalyl distributed intra-individual draws.
intraUnifDraws Character vector Names of uniformly distributed intra-individual draws.

llTest Numeric scalar Tolerance for test 2. A candidate is discarded if the norm of its gradient is
smaller than gTest AND its LL is further than llTest from a better candidate.
Default is 3.

maxIterations Numeric scalar Maximum number of iterations of the estimation routine before stopping.
Used only if apollo_control$HB is FALSE. Default is 200.

maxStages Numeric scalar Maximum number of search stages. The algorithm will stop when there is
only one candidate left, or if it reaches this number of stages. Default is 5.

mdcnevNests List of numeric scalars or vectors Lambda parameters for each nest. Elements must be named with the nest
name. The lambda at the root is �xed to 1, and therefore must be no be
de�ned.
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mdcnevStructure Numeric matrix One row per nest and one column per alternative. Each element of the matrix
is 1 if an alternative belongs to the corresponding nest.

minConsumption Named list of scalars or numeric
vectors

Minimum consumption of the alternatives, if consumed. As many elements as
alternatives. Names must match those in alternatives.

mixing Boolean Should be TRUE for models with mixing, and FALSE otherwise.
model Model object Estimated model object as returned by function apollo_estimate.

model_component Character Name of component of apollo_probabilities output to calculate predictions
for. Default is "model", i.e. the whole model.

modelDescr Character Description of the model.
modelName Character Name of the model.

mu Numeric scalar Intercept of the linear model.
multPar1 Numeric scalar A value to scale parName1
multPar2 Numeric scalar A value to scale parName2

nCandidates Numeric scalar Number of candidate sets of parameters to be used at the start. Default is
100.

nCores Numeric Number of threads (processors) to use in estimation of the model.
nCoresTry Numeric vector Number of threads to try. Default is from 1 to the detected number of cores.
nDrawsTry Numeric vector Number of inter and intra-person draws to try. Default value is c(50, 100, 200)

nlNests List of numeric scalars or vectors Lambda parameters for each nest. Elements must be named with the nest
name. The lambda at the root is �xed to 1 if excluded (recommended).

nlStructure Named list of character vectors As many elements as nests, it must include the "root". Each element contains
the names of the nests or alternatives that belong to that nest. Element
names must match those in \codenlNests.

noDiagnostics Boolean TRUE to avoid printing of diagnostics data during estimation. Default is
FALSE.

noValidation Boolean TRUE to avoid input validation by model functions (apollo_mnl,
apollo_mdcev, etc.) during estimation. Default is FALSE.

nRep Numeric scalar Number of times the procedure is repeated.
numDeriv_settings List Additional arguments to the Richardson method used by numDeriv to

calculate the Hessian. See argument method.args in numDeriv::grad for more
details.

operation Character Function to calculate the delta method for. Valid values are "sum", "di�",
"ratio", "exp", "logistic", "lognormal".

outcomeNormal Numeric vector Dependant variable of linear model.
outcomeOrdered Numeric or Character vector Dependant variable of ordered logit.
overwrite_�xed Boolean TRUE if values for �xed parameters should also be read from input �le.

Default is FALSE.
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P List of vectors, matrices or 3-dim
arrays

Likelihood of the model components.

parName1 Character Name of the �rst parameter.
parName2 Character Name of the second parameter. Optional depending on operation.

pDigits Numeric scalar Number of decimal places to print on p-values. Default is two.
phi1 Numeric scalar or vector Sensitivity
phi2 Numeric scalar or vector Process parameter

predicted_shares Named list of numeric vectors Predicted probability of each alternative. Can be calculated using
apollo_prediction. Names must match alternatives.

printChange Boolean TRUE (default) for printing di�erence between starting values and estimates.
printClassical Boolean TRUE (default) for printing classical standard errors.

printCorr Boolean TRUE (default) for printing parameters correlation matrix. If
printClassical=TRUE, both classical and robust matrices are printed.

printCovar Boolean TRUE (default) for printing parameters covariance matrix. If
printClassical=TRUE, both classical and robust matrices are printed.

printDiagnostics Boolean TRUE (default) for printing summary of choices in database and other
diagnostics.

printLevel Numeric scalar Higher values render more verbous outputs. Can take values 0, 1, 2 or 3.
Ignored if apollo_control$HB is TRUE. Default is 3.

printOutliers Boolean TRUE (default) for printing 20 individuals with worst average �t across
observations.

printPVal Boolean TRUE for printing p-values. FALSE by default.
printT1 Boolean If TRUE, t-test for H0: apollo_beta=1 are printed. FALSE by default.

rows Boolean vector Consideration of rows in the likelihood calculation, FALSE to exclude.
Length equal to the number of observations (nObs). Default is \code"all",
equivalent for rep(TRUE, nObs)

saveCorr Boolean TRUE (default) for saving estimated correlation matrix to a CSV �le.
saveEst Boolean TRUE (default) for saving estimated parameters and standard errors to a

CSV �le.
saveModelObject Boolean TRUE (default) to save the R model object to a �le (use apollo_loadModel

to load it to memory)
scales List of numeric vectors Scale factors of each logit model. Should have one element less than

choiceVars. At least one element should be normalized to 1. If omitted,
scale=1 for all positions is assumed.

scalings Named numeric vector Scalings to be applied to individual model parameters or posterior chains
during estimation.

seed Numeric Seed for random number generation.
sigma Numeric scalar Scale parameter of the model extreme value type I error.
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silent Boolean If TRUE, no information is printed to the console by the function. Default is
FALSE.

smartStart Boolean If TRUE, candidates are randomly generated with more chances in the
directions the Hessian indicates improvement of the LL function. Default is
FALSE.

subsamples Named list of boolean vectors Each element of the list de�nes a subsample (e.g. sociodemographics) for each
observation.

tau Numeric vector Thresholds. As many as number of di�erent levels in the dependent variable -
1. Extreme thresholds are �xed at -inf and +inf. No mixing allowed in
thresholds.

tDigits Numeric scalar Number of decimal places to print on t-ratios values. Default is two.
timesteps Numeric scalar or vector Number of timesteps to consider. Should be an integer bigger than 0.

V [MNL, NL, CNL, MDCECV,
MDCNEV] List of deterministic
utilities

Utilities of the alternatives. Names of elements must match those in
'alternatives'.

V [OL] Deterministic utility Deterministic part of the utility of the ordered logit.
validationSize Numeric scalar Size of the validation sample. Can be a percentage of the sample (0-1) or the

number of individuals in the validation sample (>1). Default is 0.1.
weights Numeric vector Vector of weights, of length equal to number of rows in the data.

workInLogs Boolean TRUE for higher numeric stability during estimation, at the expense of
computational time. Mostly useful for panel models.

writeF12 Boolean TRUE for writing results into an F12 �le (ALOGIT format). Default is
FALSE.

writeIter Boolean Writes value of the parameter on each iteration on a CSV �le. Works only if
estimation_routine="bfgs". Default is TRUE.

xNormal Numeric vector Deterministic part of the linear model.
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